吉林大学学报(医学版) ›› 2022, Vol. 48 ›› Issue (1): 256-264.doi: 10.13481/j.1671-587X.20220133
收稿日期:
2021-08-17
出版日期:
2022-01-28
发布日期:
2022-01-17
通讯作者:
李珊山
E-mail:shansalee@163.com
作者简介:
谭紫凝(1995-),女,吉林省吉林市人,在读硕士研究生,主要从事白癜风免疫治疗方面的研究。
基金资助:
Received:
2021-08-17
Online:
2022-01-28
Published:
2022-01-17
摘要:
白癜风是一种易诊难治的皮肤疾病,目前临床上尚无特效疗法能有效阻止该病的复发。干细胞是一种具有潜在的无限分裂能力和分化为多种靶细胞能力的细胞,在白癜风的发生发展过程中起重要作用。毛囊中黑素干细胞的增殖和迁移使其成为皮肤中黑素细胞的重要来源和储备。间充质干细胞(骨髓来源和脂肪来源的间充质干细胞)具有免疫调节、抑制氧化应激和促组织修复等功能,可以作为自体黑素细胞移植的辅助治疗。干细胞为白癜风的治疗提供了一个新的可行性方案。目前,国内外学者对干细胞在多种皮肤疾病中临床应用的报道相对较多,但对干细胞在白癜风治疗方面的研究报道较少,且多局限于实验研究阶段,只有少量进入临床试验阶段。现就白癜风的发病机制、干细胞的生物学特性及临床应用优势,以及白癜风相关干细胞进行简要综述,展望其在白癜风治疗中的发展趋势,并对各种干细胞应用可能存在的问题进行评估,旨在为干细胞在白癜风中的应用研究提供参考。
中图分类号:
谭紫凝,甄昱,李珊山. 干细胞与白癜风发生发展的关系及其对白癜风治疗作用的研究进展Research progress in relationship between stem cells and occurrence and development of vitiligo and its therapeutic effect on vitiligo[J]. 吉林大学学报(医学版), 2022, 48(1): 256-264.
1 | FRISOLI M L, ESSIEN K, HARRIS J E. Vitiligo: mechanisms of pathogenesis and treatment[J]. Annu Rev Immunol, 2020, 38: 621-648. |
2 | NARAYAN V S, UITENTUIS S E, LUITEN R M, et al. Patients’perspective on current treatments and demand for novel treatments in vitiligo[J]. J Eur Acad Dermatol Venereol, 2021, 35(3): 744-748. |
3 | NIU C, AISA H A. Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo[J]. Molecules, 2017, 22(8): E1303. |
4 | CHEN J R, LI S L, LI C Y. Mechanisms of melanocyte death in vitiligo[J]. Med Res Rev, 2021, 41(2): 1138-1166. |
5 | BOUKHEDOUNI N, MARTINS C, DARRIGADE A S,et al. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo[J].JCI Insight,2020,5(11):e133772. |
6 | WU X Y, YANG Y W, XIANG L H, et al. The fate of melanocyte: Mechanisms of cell death in vitiligo[J]. Pigment Cell Melanoma Res, 2021, 34(2): 256-267. |
7 | BERGQVIST C, EZZEDINE K. Vitiligo: a focus on pathogenesis and its therapeutic implications[J]. J Dermatol, 2021, 48(3): 252-270. |
8 | SINGH M, KOTNIS A, JADEJA S D, et al. Cytokines: the Yin and Yang of vitiligo pathogenesis[J]. Expert Rev Clin Immunol, 2019, 15(2): 177-188. |
9 | FRĄCZEK A, OWCZARCZYK-SACZONEK A, PLACEK W. The role of TRM cells in the pathogenesis of vitiligo-A review of the current state-of-the-art[J]. Int J Mol Sci, 2020, 21(10): E3552. |
10 | SENESCHAL J, BONIFACE K, D’ARINO A, et al. An update on vitiligo pathogenesis[J]. Pigment Cell Melanoma Res, 2021, 34(2): 236-243. |
11 | SEARLE T, AL-NIAIMI F, ALI F R. Vitiligo: an update on systemic treatments[J]. Clin Exp Dermatol, 2021, 46(2): 248-258. |
12 | LI S L, ZHU G N, YANG Y Q, et al. Oxidative stress drives CD8+ T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes[J]. J Allergy Clin Immunol, 2017, 140(1): 177-189.e9. |
13 | ABDALLAH M, EL-MOFTY M, ANBAR T, et al. CXCL-10 and Interleukin-6 are reliable serum markers for vitiligo activity: a multicenter cross-sectional study[J]. Pigment Cell Melanoma Res, 2018, 31(2): 330-336. |
14 | RICHMOND J M, STRASSNER J P, RASHIGHI M, et al. Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo[J]. J Invest Dermatol, 2019, 139(4): 769-778. |
15 | JAENISCH R, YOUNG R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming[J]. Cell, 2008, 132(4): 567-582. |
16 | 黄梁江, 陈 红. 干细胞的临床研究与转化[J]. 内科急危重症杂志, 2020, 26(2): 104-108. |
17 | PRAVEEN KUMAR L, KANDOI S, MISRA R,et al. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine[J]. Cytokine Growth Factor Rev, 2019, 46: 1-9. |
18 | BOCHON B, KOZUBSKA M, SURYGAŁA G, et al. Mesenchymal stem cells-potential applications in kidney diseases[J]. Int J Mol Sci, 2019, 20(10): 2462. |
19 | OWCZARCZYK-SACZONEK A, WOCIÓR A, PLACEK W, et al. The use of adipose-derived stem cells in selected skin diseases (vitiligo, alopecia, and nonhealing wounds)[J]. Stem Cells Int, 2017, 2017: 4740709. |
20 | ZHANG P, KLING R E, RAVURI S K, et al. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration[J]. J Tissue Eng, 2014, 5: 2041731414556850. |
21 | ANDERI R, MAKDISSY N, AZAR A, et al. Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata[J]. Stem Cell Res Ther, 2018, 9(1): 141. |
22 | PAGANELLI A, KALECI S, BENASSI L, et al. Mesenchymal stem cells and psoriasis: State of the art and future perspectives[J].Dermatol Ther,2020,33(2):e13247. |
23 | HEO J R, HWANG K A, KIM S U, et al. A potential therapy using engineered stem cells prevented malignant melanoma in cellular and xenograft mouse models[J]. Cancer Res Treat, 2019, 51(2): 797-811. |
24 | CIPRIANI P, DI BENEDETTO P, LIAKOULI V,et al.Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy[J]. Clin Exp Immunol, 2013, 173(2): 195-206. |
25 | XU J Y. Therapeutic applications of mesenchymal stem cells for systemic lupus erythematosus[J]. Adv Exp Med Biol, 2018, 1089: 73-85. |
26 | YANG K, QIU W, GU P R, et al. Regeneration of mouse skin melanocyte stem cells in vivo and in vitro [J]. Methods Mol Biol, 2019, 1879: 267-284. |
27 | LI H R, HOU L. Regulation of melanocyte stem cell behavior by the niche microenvironment[J]. Pigment Cell Melanoma Res, 2018, 31(5): 556-569. |
28 | LEE J H, FISHER D E. Melanocyte stem cells as potential therapeutics in skin disorders[J]. Expert Opin Biol Ther, 2014, 14(11): 1569-1579. |
29 | LEI T C, HEARING V J. Deciphering skin re-pigmentation patterns in vitiligo: an update on the cellular and molecular events involved[J]. Chin Med J (Engl), 2020, 133(10): 1231-1238. |
30 | GUO H Y, XING Y Z, LIU Y X, et al. Wnt/β-catenin signaling pathway activates melanocyte stem cells in vitro and in vivo [J]. J Dermatol Sci, 2016, 83(1): 45-51. |
31 | INFARINATO N R, STEWART K S, YANG Y H, et al. BMP signaling: at the gate between activated melanocyte stem cells and differentiation[J]. Genes Dev, 2020, 34(23/24): 1713-1734. |
32 | REGAZZETTI C, JOLY F, MARTY C, et al. Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: a promising target for repigmenting vitiligo patients[J]. J Invest Dermatol, 2015, 135(12): 3105-3114. |
33 | YARDMAN-FRANK J M, FISHER D E. Skin pigmentation and its control: From ultraviolet radiation to stem cells[J]. Exp Dermatol, 2021, 30(4): 560-571. |
34 | OCAMPO-GARZA J, SALINAS-SANTANDER M, WELSH O, et al. Expression of melanocortin 1 receptor before and after narrowband UVB phototherapy treatment in patients with stable vitiligo: a prospective study[J]. Exp Ther Med, 2020, 19(3): 1649-1654. |
35 | BIRLEA S A, GOLDSTEIN N B, NORRIS D A. Repigmentation through melanocyte regeneration in vitiligo[J]. Dermatol Clin, 2017, 35(2): 205-218. |
36 | OKAMOTO N, AOTO T, UHARA H, et al. A melanocyte: melanoma precursor niche in sweat glands of volar skin[J]. Pigment Cell Melanoma Res, 2014, 27(6): 1039-1050. |
37 | FRIEDENSTEIN A J. Precursor cells of mechanocytes[M]//International review of cytology. Amsterdam: Elsevier, 1976: 327-359. |
38 | KESHTKAR S, AZARPIRA N, GHAHREMANI M H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1): 63. |
39 | MEI X Y, SUN Y, WU Z W, et al. In vitro -induced differentiation of bone marrow mesenchymal stem cells into melanocytes[J]. Cell Biol Int, 2015, 39(7): 824-833. |
40 | ESQUIVEL D, MISHRA R, SRIVASTAVA A. Stem cell therapy offers a possible safe and promising alternative approach for treating vitiligo: a review[J]. Curr Pharm Des, 2020, 26(37): 4815-4821. |
41 | KIM D S, JANG I K, LEE M W, et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-Γ[J]. EBioMedicine, 2018, 28: 261-273. |
42 | LANZA C, MORANDO S, VOCI A, et al. Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo [J]. J Neurochem, 2009, 110(5): 1674-1684. |
43 | ZHANG F, PENG W X, ZHANG J, et al. New strategy of bone marrow mesenchymal stem cells against oxidative stress injury via Nrf2 pathway: oxidative stress preconditioning[J]. J Cell Biochem, 2019, 120(12): 19902-19914. |
44 | ZHU L F, LIN X, ZHI L, et al. Mesenchymal stem cells promote human melanocytes proliferation and resistance to apoptosis through PTEN pathway in vitiligo[J]. Stem Cell Res Ther, 2020, 11(1): 26. |
45 | ZUK P A, ZHU M, MIZUNO H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2): 211-228. |
46 | MAZINI L, ROCHETTE L, HAMDAN Y, et al. Skin immunomodulation during regeneration: emerging new targets[J]. J Pers Med, 2021, 11(2): 85. |
47 | HORINOUCHI C D, BARISÓN M J, ROBERT A W, et al. Influence of donor age on the differentiation and division capacity of human adipose-derived stem cells[J]. World J Stem Cells, 2020, 12(12): 1640-1651. |
48 | ZAVALA G, SANDOVAL C, MEZA D, et al. Differentiation of adipose-derived stem cells to functional CD105neg CD73low melanocyte precursors guided by defined culture condition[J]. Stem Cell Res Ther, 2019, 10(1): 249. |
49 | GENTILE P, GARCOVICH S. Adipose-derived mesenchymal stem cells (AD-MSCs) against ultraviolet (UV) radiation effects and the skin photoaging[J]. Biomedicines, 2021, 9(5): 532. |
50 | EL-BADAWY A, AMER M, ABDELBASET R,et al. Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells[J]. Sci Rep, 2016, 6: 37801. |
51 | KIM J Y, PARK C D, LEE J H, et al. Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes[J]. Acta Derm Venereol, 2012, 92(1): 16-23. |
52 |
SALEH A A, ABDEL SALAM O H, METWALLY H G, et al. Comparison treatment of vitiligo by co-culture of melanocytes derived from hair follicle with adipose-derived stem cells with and without NB-UVB[J]. Pigmentary Disorders, 2017, 4(1). DOI:10.4172/2376-0427.1000256 .
doi: 10.4172/2376-0427.1000256 |
53 | VIZOSO F J, EIRO N, CID S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017, 18(9): E1852. |
54 | CHOI E W, SEO M K, WOO E Y, et al. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J]. Exp Dermatol, 2018, 27(10): 1170-1172. |
55 | XU R, GREENING D W, ZHU H J, et al. Extracellular vesicle isolation and characterization:toward clinical application[J].Clin Invest,2016,126(4):1152-1162. |
56 | BELLEI B, MIGLIANO E, TEDESCO M, et al. Adipose tissue-derived extracellular fraction characterization: biological and clinical considerations in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1): 207. |
57 | CAI Y, LI J Y, JIA C S, et al. Therapeutic applications of adipose cell-free derivatives: a review[J]. Stem Cell Res Ther, 2020, 11(1): 312. |
58 | BELLEI B, PAPACCIO F, FILONI A, et al. Extracellular fraction of adipose tissue as an innovative regenerative approach for vitiligo treatment[J]. Exp Dermatol, 2019, 28(6): 695-703. |
59 | PAINO F, RICCI G, DE ROSA A, et al. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes[J]. Eur Cell Mater, 2010, 20: 295-305. |
60 | TSUCHIYAMA K, WAKAO S, KURODA Y, et al. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts[J]. J Invest Dermatol, 2013, 133(10): 2425-2435. |
61 | YAMAUCHI T, YAMASAKI K, TSUCHIYAMA K, et al. A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction[J]. J Dermatol Sci, 2017, 86(3): 198-205. |
62 | FANG D, LEISHEAR K, NGUYEN T K, et al. Defining the conditions for the generation of melanocytes from human embryonic stem cells[J]. Stem Cells, 2006, 24(7): 1668-1677. |
63 | WU D C, BOYD A S, WOOD K J. Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine[J]. Front Biosci, 2007, 12: 4525-4535. |
64 | GLEDHILL K, GUO Z Y, UMEGAKI-ARAO N,et al. Melanin transfer in human 3D skin equivalents generated exclusively from induced pluripotent stem cells[J]. PLoS One, 2015, 10(8): e0136713. |
65 | 李遇梅, 张怡萱, 刘莉萍. 诱导性多功能干细胞在皮肤科研究与应用的进展[J]. 中华皮肤科杂志, 2019, 52(7): 445-449. |
66 | 伍婧玥, 李 敏, 王 刚, 等. 毛囊干细胞的应用领域[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(6): 359-363. |
67 | YASHIRO M, MII S, AKI R, et al. From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells[J]. Cell Cycle, 2015, 14(14): 2362-2366. |
68 | TOTANI A, AMIN H, BACCHI S, et al. Vitiligo following stem-cell transplant[J]. Bone Marrow Transplant, 2020, 55(2): 332-340. |
69 | SANLI H, AKAY B N, ARAT M, et al. Vitiligo after hematopoietic cell transplantation: six cases and review of the literature[J]. Dermatology, 2008, 216(4): 349-354. |
[1] | 边东潇,包幸福,胡敏. 兔脱细胞软骨基质颗粒复合SD大鼠脂肪干细胞对软骨内成骨的促进作用[J]. 吉林大学学报(医学版), 2022, 48(4): 883-891. |
[2] | 邹馨颖,高爽,赵红,刘新,赵远航,宋嘉卓,闫琳琳,张志民. 载TGF-β3甲基丙烯酰化肝素对牙髓干细胞成骨分化能力的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(4): 954-961. |
[3] | 汪文涛,米旭光,周阳,蒲文星,高佳旭,景猛,孟繁凯. 骨髓间充质干细胞来源外泌体诱导自噬对MPP+抑制SH-SY5Y细胞存活的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 606-614. |
[4] | 颜培玉,张爱臣,章宏,李杨,张萌萌,洛梦泽,潘颖. 脂肪间充质干细胞对卵巢早衰模型大鼠的治疗作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 648-656. |
[5] | 田野,阿不都米吉提·阿不都克力木null,王鹏,沙漠,崔崎. 肿瘤相关巨噬细胞极化状态对前列腺癌干细胞自我更新能力和血管生成拟态的影响[J]. 吉林大学学报(医学版), 2022, 48(2): 374-382. |
[6] | 郑浩琪,尹嘉宁,林雯颖,刘丽. 儿童感染后闭塞性细支气管炎治疗方法的研究进展Research progress in treatment methods of post-infectious bronchiolitis obliterans in children[J]. 吉林大学学报(医学版), 2022, 48(2): 533-539. |
[7] | 冯术青,姚艳红,史月,刘志彬,高峰. 实时荧光定量PCR法检测外周血中BCR/ABL基因表达在Ph+急性淋巴细胞白血病患者造血干细胞移植治疗中的应用[J]. 吉林大学学报(医学版), 2022, 48(1): 180-187. |
[8] | 董霞,王训霞,杨芳. miR-34a对人牙周膜干细胞成骨分化的促进作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(6): 1362-1370. |
[9] | 刘轩辰,帖晓瑛,刘玉林,王宁. 何首乌提取物对失重小鼠骨质疏松和骨髓间充质干细胞成骨分化的影响[J]. 吉林大学学报(医学版), 2021, 47(6): 1386-1396. |
[10] | 王琛,田君,程海玲. 人脐带间充质干细胞对宫颈癌HeLa细胞增殖和凋亡的影响及其作用机制[J]. 吉林大学学报(医学版), 2021, 47(5): 1187-1193. |
[11] | 李思雨,赵敏,杨茂玲,肖农,江伟. 视黄酸通过GSK-3β对大鼠缺氧缺血性脑损伤后海马神经干细胞增殖的调节作用[J]. 吉林大学学报(医学版), 2021, 47(5): 1077-1085. |
[12] | 葛京京,徐红霞,谢丽霞,杜凯丽,桑明,孙晓东. 人浆液性卵巢癌细胞体外培养体系的建立及其在化疗药物敏感性检测中的应用[J]. 吉林大学学报(医学版), 2021, 47(4): 999-1007. |
[13] | 李晓辉, 瞿紫微, 卢昕, 孟庆彬, 陈华涛, 任骏, 谭成沛. 骨髓间充质干细胞来源性外泌体携带miR-196b-5p对结肠癌细胞生物学特性的调控作用[J]. 吉林大学学报(医学版), 2021, 47(3): 660-668. |
[14] | 张诗晨,金丽鸥,李跃,郑晓雪,王婧,魏欣,王众泽,韩冰. kartogenin对骨关节炎的治疗作用机制及其在软骨组织工程学中应用的研究进展[J]. 吉林大学学报(医学版), 2021, 47(2): 519-527. |
[15] | 徐宠俊,何荷蕃,林群,章涛. 人肝细胞生长因子基因慢病毒载体的构建及其在骨髓间充质干细胞中的表达[J]. 吉林大学学报(医学版), 2021, 47(1): 16-24. |
|