1 |
GUPTA A, LUTSENKO S. Human copper transporters: mechanism, role in human diseases and therapeutic potential[J]. Future Med Chem,2009,1(6): 1125-1142.
|
2 |
VAN DEURSEN J M. The role of senescent cells in ageing[J]. Nature, 2014, 509(7501): 439-446.
|
3 |
VALKO M, JOMOVA K, RHODES C J, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90(1): 1-37.
|
4 |
LI H X, FAN R C, LI L B, et al. Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat[J]. Plant Cell Environ, 2014, 37(7): 1561-1573.
|
5 |
JUNG H I, GAYOMBA S R, YAN J P, et al. Brachypodium distachyon as a model system for studies of copper transport in cereal crops[J]. Front Plant Sci, 2014, 5: 236.
|
6 |
TADINI-BUONINSEGNI F, SMEAZZETTO S. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B[J]. IUBMB Life, 2017, 69(4): 218-225.
|
7 |
YU C H, DOLGOVA N V, DMITRIEV O Y. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A[J]. IUBMB Life, 2017, 69(4): 226-235.
|
8 |
LUTSENKO S. Dynamic and cell-specific transport networks for intracellular copper ions[J]. J Cell Sci, 2021, 134(21): jcs240523.
|
9 |
CHEN J, JIANG Y H, SHI H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Arch, 2020, 472(10): 1415-1429.
|
10 |
CULOTTA V C, KLOMP L W J, STRAIN J, et al. The copper chaperone for superoxide dismutase[J]. J Biol Chem, 1997, 272(38): 23469-23472.
|
11 |
DANCIS A, HAILE D, YUAN D S, et al. The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake[J]. J Biol Chem, 1994, 269(41): 25660-25667.
|
12 |
ZHOU B, GITSCHIER J. hCTR1: a human gene for copper uptake identified by complementation in yeast[J]. Proc Natl Acad Sci U S A, 1997, 94(14): 7481-7486.
|
13 |
LARSON C A, ADAMS P L, BLAIR B G, et al. The role of the methionines and histidines in the transmembrane domain of mammalian copper transporter 1 in the cellular accumulation of cisplatin[J]. Mol Pharmacol, 2010, 78(3): 333-339.
|
14 |
BOSSAK K, DREW S C, STEFANIAK E, et al. The Cu(Ⅱ) affinity of the N-terminus of human copper transporter CTR1: comparison of human and mouse sequences[J]. J Inorg Biochem, 2018, 182: 230-237.
|
15 |
REN F F, LOGEMAN B L, ZHANG X H, et al. X-ray structures of the high-affinity copper transporter Ctr1[J]. Nat Commun, 2019, 10(1): 1386.
|
16 |
NOSE Y, KIM B E, THIELE D J. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function[J]. Cell Metab, 2006, 4(3): 235-244.
|
17 |
WANG Y F, HODGKINSON V, ZHU S, et al. Advances in the understanding of mammalian copper transporters[J]. Adv Nutr, 2011, 2(2): 129-137.
|
18 |
HARTWIG C, ZLATIC S A, WALLIN M, et al. Trafficking mechanisms of P-type ATPase copper transporters[J]. Curr Opin Cell Biol, 2019, 59: 24-33.
|
19 |
GUTHRIE L M, SOMA S, YUAN S, et al. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice[J]. Science, 2020, 368(6491): 620-625.
|
20 |
SHRIBMAN S, POUJOIS A, BANDMANN O, et al. Wilson’s disease: update on pathogenesis, biomarkers and treatments[J]. J Neurol Neurosurg Psychiatry, 2021, 92(10): 1053-1061.
|
21 |
ZHANG Z B, SERRANO-NEGRÓN J E, MARTÍNEZ J A, et al. Dynamic function of DPMS is essential for angiogenesis and cancer progression[J]. Adv Exp Med Biol, 2018, 1112: 223-244.
|
22 |
MATSON DZEBO M, BLOCKHUYS S, VALENZUELA S, et al. Copper chaperone Atox1 interacts with cell cycle proteins[J]. Comput Struct Biotechnol J, 2018, 16: 443-449.
|
23 |
KIM D W, SHIN M J, CHOI Y J, et al. Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-κB pathways[J]. BMB Rep, 2018, 51(12): 654-659.
|
24 |
EIDE D J. The molecular biology of metal ion transport in Saccharomyces cerevisiae[J]. Annu Rev Nutr, 1998, 18: 441-469.
|
25 |
ILYECHOVA E Y, BONALDI E, ORLOV I A, et al. CRISP-R/Cas9 mediated deletion of copper transport genes CTR1 and DMT1 in NSCLC cell line H1299. biological and pharmacological consequences[J]. Cells, 2019, 8(4): E322.
|
26 |
STEFANIAK E, PŁONKA D, DREW S C, et al. The N-terminal 14-mer model peptide of human Ctr1 can collect Cu(Ⅱ) from albumin. Implications for copper uptake by Ctr1[J]. Metallomics, 2018, 10(12): 1723-1727.
|
27 |
ISHIHARA K, KAWASHITA E, SHIMIZU R, et al. Copper accumulation in the brain causes the elevation of oxidative stress and less anxious behavior in Ts1Cje mice, a model of Down syndrome[J]. Free Radic Biol Med, 2019, 134: 248-259.
|
28 |
HORDYJEWSKA A, POPIOŁEK Ł, KOCOT J. The many “faces” of copper in medicine and treatment[J]. Biometals, 2014, 27(4): 611-621.
|
29 |
HORN N, WITTUNG-STAFSHEDE P. ATP7A-regulated enzyme metalation and trafficking in the menkes disease puzzle[J].Biomedicines,2021,9(4): 391.
|
30 |
BARNES N, BARTEE M Y, BRAITERMAN L, et al. Cell-specific trafficking suggests a new role for renal ATP7B in the intracellular copper storage[J]. Traffic, 2009, 10(6): 767-779.
|
31 |
LINDER M C. Copper homeostasis in mammals, with emphasis on secretion and excretion. A review[J]. Int J Mol Sci, 2020, 21(14): E4932.
|
32 |
MASALDAN S, CLATWORTHY S A S, GAMELL C,et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018, 14: 100-115.
|
33 |
MATOS L, GOUVEIA A M, ALMEIDA H. Resveratrol attenuates copper-induced senescence by improving cellular proteostasis[J]. Oxid Med Cell Longev, 2017, 2017: 3793817.
|
34 |
MASALDAN S, CLATWORTHY S A S, GAMELL C,et al. Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy[J]. Redox Biol, 2018, 16: 322-331.
|
35 |
KUO Y M, ZHOU B, COSCO D, et al. The copper transporter CTR1 provides an essential function in mammalian embryonic development[J]. Proc Natl Acad Sci U S A, 2001, 98(12): 6836-6841.
|
36 |
COBINE P A, BRADY D C. Cuproptosis: cellular and molecular mechanisms underlying copper-induced cell death[J]. Mol Cell, 2022, 82(10): 1786-1787.
|
37 |
ZHONG L, DONG A J, FENG Y, et al. Alteration of metal elements in radiation injury: radiation-induced copper accumulation aggravates intestinal damage[J]. Dose Response,2020,18(1).DOI:10.1177/1559325820904547 .
doi: 10.1177/1559325820904547
|
38 |
FENG C Z, MA F, HU C H, et al. SOX9/miR-130a/CTR1 axis modulates DDP-resistance of cervical cancer cell[J]. Cell Cycle, 2018, 17(4): 448-458.
|
39 |
MARQUES C M S, NUNES E A, LAGO L, et al. Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells[J]. Mutat Res Genet Toxicol Environ Mutagen, 2017, 824: 42-51.
|
40 |
BALSANO C, PORCU C, SIDERI S. Is copper a new target to counteract the progression of chronic diseases?[J]. Metallomics, 2018, 10(12): 1712-1722.
|
41 |
SHAHID M, POURRUT B, DUMAT C, et al. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants[J]. Rev Environ Contam Toxicol, 2014, 232: 1-44.
|
42 |
THEOPHANIDES T, ANASTASSOPOULOU J. The effects of metal ion contaminants on the double stranded DNA helix and diseases[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng,2017,52(10): 1030-1040.
|
43 |
廖 月, 何毅怀, 罗亚文. 氧化应激在急性肝损伤中的作用[J].临床肝胆病杂志, 2022,38(10):2402-2407.
|
44 |
BHATTACHARJEE A, CHAKRABORTY K, SHUKLA A. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases[J]. Metallomics, 2017, 9(10): 1376-1388.
|
45 |
GINOTRA Y P, RAMTEKE S N, WALKE G R,et al. Histidine availability is decisive in ROS-mediated cytotoxicity of copper complexes of Aβ1-16 peptide[J]. Free Radic Res, 2016, 50(4): 405-413.
|
46 |
UPADHYAY S, TORRES G, LIN X R. Laccases involved in 1, 8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis[J]. Eukaryot Cell, 2013, 12(12): 1641-1652.
|
47 |
STAFFORD S L, BOKIL N J, ACHARD M E, et al. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper[J]. Biosci Rep, 2013, 33(4): e00049.
|
48 |
LUCA A D, BARILE A, ARCIELLO M, et al. Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy[J]. J Trace Elem Med Biol, 2019, 55: 204-213.
|
49 |
PRASAD S, GUPTA S C, TYAGI A K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals[J]. Cancer Lett, 2017, 387: 95-105.
|
50 |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
|