1 |
LIN W F, KLEIN J. Recent progress in cartilage lubrication[J]. Adv Mater, 2021, 33(18): e2005513.
|
2 |
LI M Z, YIN H, YAN Z N, et al. The immune microenvironment in cartilage injury and repair[J]. Acta Biomater, 2022, 140: 23-42.
|
3 |
PENG Z, SUN H, BUNPETCH V, et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration[J]. Biomaterials, 2021, 268: 120555.
|
4 |
BEDNARCZYK E. Chondrocytes in vitro systems allowing study of OA[J]. Int J Mol Sci, 2022, 23(18): 10308.
|
5 |
邓林峡, 余慕雪, 潘思年, 等. 比较单独消化法及分步消化法培养新生大鼠原代软骨细胞的生物学特性[J]. 中国组织工程研究, 2018, 22(25): 4047-4052.
|
6 |
XU J Y, LV S, HOU Y, et al. miR-27b promotes type Ⅱ collagen expression by targetting peroxisome proliferator-activated receptor-γ2 during rat articular chondrocyte differentiation[J]. Biosci Rep, 2018, 38(1): BSR20171109.
|
7 |
YAN Y X, FU R, LIU C Q, et al. Sequential enzymatic digestion of different cartilage tissues: a rapid and high-efficiency protocol for chondrocyte isolation, and its application in cartilage tissue engineering[J]. Cartilage, 2021, 13(2 ): 1064S-1076S.
|
8 |
FRESHNEY R I. Culture of animal cells: a manual of basic technique and specialized applications[M]. 8th ed. Hoboken, NJ, USA: John Wiley & Sons, 2010.
|
9 |
ECKE A, LUTTER A H, SCHOLKA J, et al. Tissue specific differentiation of human chondrocytes depends on cell microenvironment and serum selection[J]. Cells, 2019, 8(8): 934.
|
10 |
GOLDRING M B. Human chondrocyte cultures as models of cartilage-specific gene regulation[J]. Methods Mol Med, 2005, 107: 69-95.
|
11 |
SONTHITHAI P, HANKAMONSIRI W, LERTWIMOL T, et al. A novel modified culture medium for enhancing redifferentiation of chondrocytes for cartilage tissue engineering applications[J]. Biotechnol Prog, 2022, 38(3):e3240.
|
12 |
LAM J, LEE E J, CLARK E C, et al. Honing cell and tissue culture conditions for bone and cartilage tissue engineering[J]. Cold Spring Harb Perspect Med. 2017, 7(12):a025734.
|
13 |
BAČENKOVÁ D, TREBUŇOVÁ M, DEMETEROVÁ J, et al. Human chondrocytes, metabolism of articular cartilage, and strategies for application to tissue engineering[J]. Int J Mol Sci, 2023, 24(23):17096.
|
14 |
ESMAEILI A, HOSSEINI S, KAMALI A, et al. Co-aggregation of MSC/chondrocyte in a dynamic 3D culture elevates the therapeutic effect of secreted extracellular vesicles on osteoarthritis in a rat model[J]. Sci Rep, 2022, 12(1):19827.
|
15 |
SINGH D, LINDSAY S, GURBAXANI S, et al. Elastomeric porous poly(glycerol sebacate) methacrylate (pgsm) microspheres as 3D scaffolds for chondrocyte culture and cartilage tissue engineering[J]. Int J Mol Sci, 2023, 24(13):10445.
|
16 |
ZHENG J, CHEN H J, LU C Y, et al. 3D culture of bovine articular chondrocytes in viscous medium encapsulated in agarose hydrogels for investigation of viscosity influence on cell functions[J]. J Mater Chem B, 2023, 11(31):7424-7434.
|
17 |
BAI L, HAN Q B, HAN Z Y, et al. Stem cells expansion vector via bioadhesive porous microspheres for accelerating articular cartilage regeneration[J]. Adv Healthc Mater, 2023, 10:e2302327.
|
18 |
SU Y, ZHANG B L, SUN R W, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application[J]. Drug Deliv, 2021, 28(1): 1397-1418.
|
19 |
钟烨.FOXQ1-siRNA对甲状腺癌TPC-1细胞EMT的影响[D]. 唐山: 华北理工大学, 2019.
|
20 |
LONG F, ORNITZ D M. Development of the endochondral skeleton[J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a008334.
|
21 |
YASUDA H, OH C D, CHEN D, et al. A novel regulatory mechanism of type Ⅱ collagen expression via a SOX9-dependent enhancer in Intron 6[J].J Biol Chem, 2017, 292(2): 528-538.
|
22 |
GOLDRING M B, MARCU K B. Cartilage homeostasis in health and rheumatic diseases[J]. Arthritis Res Ther, 2009, 11(3): 224.
|
23 |
WANG X Q, GUAN Y M, XIANG S Y, et al. Role of canonical wnt/β-catenin pathway in regulating chondrocytic hypertrophy in mesenchymal stem cell-based cartilage tissue engineering[J]. Front Cell Dev Biol, 2022, 10: 812081.
|
24 |
KOMORI T. Runx2, an inducer of osteoblast and chondrocyte differentiation[J]. Histochem Cell Biol, 2018, 149(4): 313-323.
|
25 |
WANG M N, SAMPSON E R, JIN H T, et al. MMP13 is a critical target gene during the progression of osteoarthritis[J]. Arthritis Res Ther, 2013, 15(1): R5.
|
26 |
YUE J J, AOBULIKASIMU A, SUN W C, et al. Targeted regulation of FoxO1 in chondrocytes prevents age-related osteoarthritis via autophagy mechanism[J]. J Cell Mol Med, 2022, 26(11):3075-3082.
|
27 |
LINDSEY R C, CHENG S, MOHAN S. Vitamin C effects on 5-hydroxymethylcytosine and gene expression in osteoblasts and chondrocytes: Potential involvement of PHD2[J]. PLoS One, 2019, 14(8): e0220653.
|
28 |
SANGHI D, MISHRA A, SHARMA A C, et al. Elucidation of dietary risk factors in osteoarthritis knee—a case-control study[J]. J Am Coll Nutr, 2015, 34(1): 15-20.
|
29 |
CHUN K W, YOO H S, YOON J J, et al. Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function[J]. Biotechnol Prog, 2004, 20(6): 1797-801.
|