Journal of Jilin University(Medicine Edition) ›› 2022, Vol. 48 ›› Issue (6): 1605-1613.doi: 10.13481/j.1671-587X.20220629
• Survey research • Previous Articles Next Articles
Yihua LI1,Tao WEN1,Yongri QIAN2(),Chunshan ZHAO3
Received:
2022-06-08
Online:
2022-11-28
Published:
2022-12-07
Contact:
Yongri QIAN
E-mail:qianyongri@ybu.edu.cn
CLC Number:
Yihua LI,Tao WEN,Yongri QIAN,Chunshan ZHAO. Correlation analysis on relationships between levels of serum uric acid and γ-glutamyl transpeptidase and metabolic syndrome in healthy physical examination population[J].Journal of Jilin University(Medicine Edition), 2022, 48(6): 1605-1613.
Tab. 1
Levels of SUA and γ-GGT of subjects in various groups"
Group | n | SUA | γ-GGT | |||||
---|---|---|---|---|---|---|---|---|
Level | Percentage of high level | OR(95%CI) | Level | Percentage of high level | OR(95%CI) | |||
Obesity | ||||||||
Yes | 2 994 | 356.7±113.8 | 29.1 | 1.510(1.346-1.688) | 1.54±0.35 | 25.0 | 1.010(0.900-1.140) | |
No | 4 566 | 317.2±117.0* | 18.3* | 1 | 1.45±0.39* | 20.1* | 1 | |
Hypertension | ||||||||
Yes | 3 407 | 343.6±110.4 | 25.4 | 1.160(1.035-1.296) | 1.54±0.38 | 26.0 | 1.370(1.226-1.540) | |
No | 4 153 | 323.9±122.0* | 20.2* | 1 | 1.43±0.37* | 18.7* | 1 | |
Dyslipidemia | ||||||||
Yes | 4 278 | 357.3±102.1 | 29.0 | 2.130(1.887-2.409) | 1.57±0.38 | 28.0 | 2.080(1.842-2.347) | |
No | 3 282 | 300.9±123.0* | 14.2* | 1 | 1.38±0.35* | 14.2* | 1 | |
Hyperglycemia | ||||||||
Yes | 2 327 | 347.1±126.1 | 26.9 | 1.180(1.053-1.332) | 1.58±0.40 | 29.7 | 1.630(1.448-1.838) | |
No | 5 233 | 326.5±112.6* | 20.6* | 1 | 1.44±0.36* | 18.6* | 1 | |
MS | ||||||||
Yes | 2 021 | 363.2±117.1 | 31.4 | 1.890(1.680-2.117) | 1.60±0.36 | 30.6 | 1.880(1.665-2.106) | |
No | 5 539 | 321.7±115.4 | 19.3* | 1 | 1.44±0.37* | 18.9* | 1 |
Tab. 2
Logistic regression analysis on risks of different metabolic disorders in population with different SUA and γ-GGT levels"
Group | Obesity | Hypertension | Dyslipidemia | Hyperglycemia | MS |
---|---|---|---|---|---|
SUA | |||||
Q1 | 1 | 1 | 1 | 1 | 1 |
Q2 | 1.590(1.382-1.830) | 1.540(1.350-1.763) | 1.530(1.348-1.747) | 0.970(0.838-1.121) | 1.510(1.282-1.772) |
Q3 | 2.390(2.083-2.747) | 1.660(1.455-1.901) | 2.410(2.113-2.750) | 1.170(1.011-1.345) | 2.140(1.829-2.502) |
Q4 | 3.000(2.615-3.446) | 1.820(1.590-2.075) | 3.810(3.319-4.365) | 1.380(1.200-1.589) | 2.880(2.467-3.352) |
γ-GGT | |||||
Q1 | 1 | 1 | 1 | 1 | 1 |
Q2 | 2.020(1.749-2.322) | 1.460(1.273-1.675) | 1.850(1.619-2.112) | 1.430(1.224-1.673) | 2.120(1.780-2.529) |
Q3 | 2.700(2.353-3.106) | 2.010(1.754-2.297) | 3.240(2.832-3.701) | 1.900(1.633-2.209) | 3.210(2.712-3.798) |
Q4 | 2.480(2.154-2.852) | 2.230(1.944-2.552) | 4.340(3.778-4.988) | 2.730(2.353-3.175) | 4.200(3.549-4.959) |
Tab. 3
Logistic regression analysis on relationships between levels of SUA and γ-GGT in subjects with different metabolic disorder degrees"
Degree of different metabolic disorders | SUA | γ-GGT | |||||
---|---|---|---|---|---|---|---|
Percentage of high level(η/%) | OR(95%CI) | P | Percentage of high level(η/%) | OR(95%CI) | P | ||
0 | 9.1 | 1 | - | 8.4 | 1 | - | |
1 | 18.4 | 2.180(1.749-2.717) | <0.01 | 18.5 | 2.320(1.849-2.910) | <0.01 | |
2 | 26.2 | 3.380(2.738-4.182) | <0.01 | 25.4 | 3.390(2.723-4.219) | <0.01 | |
3 | 30.9 | 4.290(3.452-5.341) | <0.01 | 29.5 | 4.240(3.380-5.307) | <0.01 | |
4 | 32.7 | 4.660(3.571-6.085) | <0.01 | 34.2 | 5.260(4.009-6.897) | <0.01 | |
χ2 | 264.096 | - | - | 263.058 | - | - | |
P | <0.01 | - | - | <0.01 | - | - | |
“-”:No data. |
Tab. 4
Logistic regression analysis on interaction between SUA and γ-GGT in subjects with different metabolic abnormalities"
Group | Obesity | Hypertension | Dyslipidemia | Hyperglycemia | MS |
---|---|---|---|---|---|
γ-GGT normal | |||||
SUA Q1 | 1 | 1 | 1 | 1 | 1 |
SUA Q2 | 1.640(1.403-1.914) | 1.520(1.311-1.761) | 1.590(1.376-1.832) | 0.960(0.811-1.129) | 1.530(1.271-1.844) |
SUA Q3 | 2.480(2.125-2.899) | 1.670(1.433-1.934) | 2.460(2.120-2.843) | 1.270(1.078-1.495) | 2.240(1.868-2.685) |
SUA Q4 | 3.230(2.754-3.789) | 1.820(1.558-2.121) | 3.750(3.203-4.382) | 1.460(1.238-1.725) | 3.040(2.536-3.646) |
γ-GGT elevated | |||||
SUA Q1 | 1.450(1.110-1.901) | 1.560(1.208-2.008) | 2.440(1.895-3.149) | 2.530(1.951-3.276) | 2.220(1.667-2.964) |
SUA Q2 | 2.010(1.560-2.595) | 2.590(2.011-3.323) | 3.210(2.488-4.151) | 2.450(1.901-3.163) | 3.190(2.434-4.176) |
SUA Q3 | 2.810(2.244-3.507) | 2.290(1.838-2.861) | 4.520(3.560-5.732) | 1.820(1.442-2.297) | 3.570(2.804-4.545) |
SUA Q4 | 3.150(2.588-3.837) | 2.280(1.882-2.773) | 6.490(5.202-8.103) | 2.050(1.679-2.514) | 4.150(3.349-5.131) |
Tab. 5
Logistic regression analysis on risks of MS and its related metabolic abnormalities in subjects with different SUA and γ-GGT levels"
Dependent variable | Percentage of risk(η/%) | β | Wald value | OR(95%CI) | P |
---|---|---|---|---|---|
Obesity | |||||
Normal SUA + normal γ-GGT | 35.0 | 1 | |||
Increased SUA + normal γ-GGT | 50.8 | 0.663 | 96.874 | 1.940(1.700-2.214) | <0.01 |
Normal SUA + increased γ-GGT | 41.6 | 0.269 | 14.970 | 1.308(1.142-1.499) | <0.01 |
Increased SUA + increased γ-GGT | 51.4 | 0.658 | 53.101 | 1.930(1.617-2.304) | <0.01 |
Hypertension | |||||
Normal SUA + normal γ-GGT | 41.1 | 1 | |||
Increased SUA + normal γ-GGT | 49.5 | 0.295 | 18.930 | 1.344(1.176-1.535) | <0.01 |
Normal SUA + increased γ-GGT | 53.4 | 0.463 | 44.880 | 1.589(1.388-1.820) | <0.01 |
Increased SUA + increased γ-GGT | 53.2 | 0.481 | 27.726 | 1.618(1.352-1.935) | <0.01 |
Dyslipidemia | |||||
Normal SUA + normal γ-GGT | 48.2 | 1 | |||
Increased SUA + normal γ-GGT | 69.3 | 0.860 | 147.396 | 2.363(2.057-2.715) | <0.01 |
Normal SUA + increased γ-GGT | 68.2 | 0.793 | 122.312 | 2.210(1.920-2.543) | <0.01 |
Increased SUA + increased γ-GGT | 79.4 | 1.389 | 165.014 | 4.011(3.245-4.958) | <0.01 |
Hyperglycemia | |||||
Normal SUA + normal γ-GGT | 26.1 | 1 | |||
Increased SUA + normal γ-GGT | 34.6 | 0.359 | 24.605 | 1.433(1.243-1.651) | <0.01 |
Normal SUA + increased γ-GGT | 42.0 | 0.711 | 98.415 | 2.036(1.769-2.343) | <0.01 |
Increased SUA + increased γ-GGT | 40.8 | 0.688 | 53.238 | 1.989(1.654-2.393) | <0.01 |
MS | 1 | ||||
Normal SUA + normal γ-GGT | 21.1 | ||||
Increased SUA + normal γ-GGT | 34.9 | 0.683 | 90.358 | 1.980(1.720-2.280) | <0.01 |
Normal SUA + increased γ-GGT | 34.9 | 0.689 | 89.571 | 1.992(1.727-2.298) | <0.01 |
Increased SUA + increased γ-GGT | 41.7 | 0.991 | 114.759 | 2.695(2.248-3.230) | <0.01 |
1 | 张明坤, 贾润萍, 崔玲玲, 等. 血尿酸对代谢综合征的预测作用研究[J]. 重庆医学, 2018,47(12):1599-1602. |
2 | BULUSU S, SHARMA M. What does serum γ-glutamyltransferase tell us as a cardiometabolic risk marker? [J]. Ann Clin Biochem, 2016, 53(Pt 3): 312-332. |
3 | 刘玉洁, 王 喆, 毛 倩, 等. 基于纵向数据的谷氨酰转肽酶水平与代谢综合征的关联性分析[J]. 郑州大学学报(医学版), 2022, 57(2): 186-190. |
4 | 曾露云, 张 玲, 卢惠明, 等. 武汉市某健康体检人群血尿酸水平与代谢综合征及其组分的关联性研究[J]. 中国循证心血管医学杂志, 2020, 12(3): 293-296. |
5 | CICERO A F G, FOGACCI F, GIOVANNINI M,et al.Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella Heart Study[J]. Sci Rep, 2018, 8(1): 11529. |
6 | RUBIO-GUERRA A F, MORALES-LÓPEZ H, GARRO-ALMENDARO A K, et al. Circulating levels of uric acid and risk for metabolic syndrome[J]. Curr Diabetes Rev, 2017, 13(1): 87-90. |
7 | YU T Y, JEE J H, BAE J C, et al. Serum uric acid: a strong and independent predictor of metabolic syndrome after adjusting for body composition[J]. Metabolism, 2016, 65(4): 432-440. |
8 | 陈海霞. 尿酸对血管内皮细胞氧化应激反应的影响及其对细胞的损伤作用[D]. 长沙: 中南大学, 2012. |
9 | 谭树凤, 王 凤, 沈红卫, 等. 上海某郊区老年健康体检人群血尿酸水平与代谢综合征的关系研究[J]. 老年医学与保健, 2021, 27(3): 606-608, 617. |
10 | LI D D, XU T, CHENG X Q, et al. Serum gamma-glutamyltransferase levels are associated with cardiovascular risk factors in China: a nationwide population-based study[J]. Sci Rep, 2018, 8: 16533. |
11 | FENG X J, YANG Y Y, XIE H Q, et al. The association between hyperuricemia and obesity metabolic phenotypes in Chinese general population: a retrospective analysis[J]. Front Nutr, 2022, 9: 773220. |
12 | LI Q, LU J, CAO X, et al. An increase in normal SUA level within the normal range predicts risk of metabolic syndrome, especially in women: a cross-sectional study[J]. Horm Metab Res, 2017, 49(5): 338-342. |
13 | 朱文奎, 季蓉蓉, 陈 洁, 等. 血清γ谷氨酰基转移酶和尿酸水平与代谢综合征相关指标的关系分析[J]. 健康教育与健康促进, 2019, 14(5): 431-433, 437. |
14 | NEJATINAMINI S, ATAIE-JAFARI A, QORBANI M,et al. Association between serum uric acid level and metabolic syndrome components[J]. J Diabetes Metab Disord, 2015, 14: 70. |
15 | HAN Y D, HAN X X, YIN Y, et al. Dose-response relationship of uric acid with fasting glucose, insulin, and insulin resistance in a United States cohort of 5, 148 non-diabetic people[J]. Front Med (Lausanne), 2022, 9: 905085. |
16 | ZHANG S H, ZHANG Y C, LIN S J, et al. Hyperuricemia as a possible risk factor for abnormal lipid metabolism in the Chinese population: a cross-sectional study[J]. Ann Palliat Med, 2021,10(11): 11454-11463. |
17 | ZHANG J X, XIANG G D, XIANG L, et al. Serum gamma-glutamyl transferase is associated with the elevated uric acid levels in normotensive Chinese adults[J]. Clin Chim Acta, 2015, 441: 122-126. |
18 | 林悦青, 钟水权, 谷辰云. 血尿酸水平与2型糖尿病患者胰岛素抵抗的相关性分析[J]. 岭南急诊医学杂志, 2022, 27(3): 271-272. |
19 | 胡梦妍, 刘锦波, 周春华, 等. 超重或肥胖与高血压的交互作用对老年人发生高尿酸血症的影响[J]. 广西医学, 2017, 39(11): 1643-1646. |
20 | 王 芹, 姜 敏, 郑 闻, 等. 南京地区体检人群血尿酸与代谢综合征关系的研究[J]. 南京医科大学学报(自然科学版), 2020, 40(12): 1815-1819. |
21 | 李 婵. 体检人群血清谷氨酰转肽酶与高尿酸血症的相关性分析[D]. 大连: 大连医科大学, 2021. |
22 | 赵晶晶, 孙纪新, 单广良, 等. 河北省不同性别成人血尿酸水平与代谢综合征的相关性分析[J]. 中国慢性病预防与控制, 2022, 30(2): 112-116. |
23 | 曲建昌, 林 璐, 张国云, 等. 老年人群高谷氨酰转肽酶预示高代谢综合征风险: 基于社区自然人群队列研究[J]. 中国糖尿病杂志, 2022, 30(5): 332-336. |
24 | 张 莎. 天津市某社区老年人群血尿酸水平调查及其与代谢综合征的关系[D]. 天津: 天津医科大学, 2020. |
25 | 蒋凤秀, 陆泽元, 张 晶, 等. 谷氨酰转肽酶水平与代谢综合征相关性研究[J]. 实用糖尿病杂志, 2018, 14(2): 18-20. |
26 | 王月娟, 高立超, 方 芳, 等. 不同血尿酸水平的糖尿病患者病情进展比较及其影响因素分析[J]. 吉林大学学报(医学版), 2015, 41(1): 135-139. |
27 | 霍建婷. 吉林省公安厅公务员代谢综合征各组分与血尿酸水平的相关性研究[D]. 长春: 吉林大学, 2020. |
28 | CIBIČKOVÁ Ľ, LANGOVÁ K, VAVERKOVÁ H, et al. Correlation of uric acid levels and parameters of metabolic syndrome[J]. Physiol Res, 2017,66(3): 481-487. |
29 | ABBASIAN M, EBRAHIMI H, DELVARIANZADEH M, et al. Association between serum uric acid (SUA) levels and metabolic syndrome (MetS) components in personnel of Shahroud University of Medical Sciences[J]. Diabetes Metab Syndr, 2016, 10(3): 132-136. |
30 | 崔 兰, 熊英环, 金乃星, 等. 吉林省延边地区朝鲜族和汉族人群胰岛素抵抗对不同代谢危险因素及其聚集性的影响[J]. 吉林大学学报(医学版),2014, 40(2): 422-427. |
[1] | Qian LIU,Guoping QI,Huayi YU,Yuyang DAI,Wenbin LU,Jianhua JIN. Bioinformatics analysis on screening of colon cancer core genes and independent prognostic factors [J]. Journal of Jilin University(Medicine Edition), 2022, 48(3): 755-765. |
[2] | LAN Yonghong, RAO Langyu, YANG Zhi, HUANG Mingmei, NIU Haiyan, QI Yaling. Expressions of HIF-1α and HSP70 in placenta tissue of patients withpregnancy-induced hypertension syndrome and their significances [J]. Journal of Jilin University Medicine Edition, 2018, 44(02): 346-349. |
[3] | TENG Rong, YANG Luyi, XIA Xiaoxue, WANG Shoudong, NING Lei, MU Qili. Analysis on correlation of sagittal craniofacial structures with different classes of malocclusion based on genetic algorithms method [J]. Journal of Jilin University Medicine Edition, 2017, 43(04): 800-804. |
[4] | HAN Weiqing, WU Shili, LYU Wei, JIANG Lingling, YIN Yutian, ZHANG Yue, ZHANG Peng, WANG Rui, WANG Yuhan, LI Bo. Detection of levels of Mn,Fe,Zn,Ca,and Mg elements in hair of adults and their correlation with BMI [J]. Journal of Jilin University Medicine Edition, 2015, 41(02): 405-409. |
[5] | YANG Si-jia,CHEN Yang,XU Shan-shan,PAN Yang,YAO Yu-hang,YANG Xue-ling,LI Bo. Detection of Ca,Fe,Zn and Cu contents in hair of 675 primary and secondary school students and its significance [J]. Journal of Jilin University Medicine Edition, 2013, 39(2): 391-395. |
[6] | YU Peng,GONG Feng-ling,LIANG Yong-ping,WANG Rong-fu,ZHANG Jian-hua. Analysis on correlation of thyroglobulin with 131-iodine whole body scan in differentiated thyroid carcinoma patientsafter thyroid ablation [J]. J4, 2011, 37(4): 691-694. |
[7] | MA Lin, KOU Chang-Gui, CHANG Lin, MENG Xiang-Fei, YAO Yan, SHI Jie-Ping, SHAN An-Liang, YU Ya-Qin. Investigation on sleep quality of residents in Changchun city and its relevant influencing factors [J]. J4, 2010, 36(4): 787-793. |
[8] | HAN Chun-ji, WANG Dong-ming, YU Xing, LI Lian-ji,PIAO Yong-quan. Preventive effect of Codonopsis Lanceolata on lipid metabolic disorder in rats and its mechanism [J]. J4, 2005, 31(4): 564-566. |
|