1 |
KAKU S, NGUYEN C D, HTET N N, et al. Acute respiratory distress syndrome: etiology, pathogenesis, and summary on management[J]. J Intensive Care Med, 2020, 35(8): 723-737.
|
2 |
TOMASHEFSKI J F Jr. Pulmonary pathology of acute respiratory distress syndrome[J]. Clin Chest Med, 2000, 21(3): 435-466.
|
3 |
KOUDSTAAL T, FUNKE-CHAMBOUR M, KREUTER M, et al. Pulmonary fibrosis: from pathogenesis to clinical decision-making[J]. Trends Mol Med, 2023, 29(12): 1076-1087.
|
4 |
BARTEL D P. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
|
5 |
DIENER C, KELLER A, MEESE E. Emerging concepts of miRNA therapeutics: from cells to clinic[J]. Trends Genet, 2022, 38(6): 613-626.
|
6 |
PARZIBUT G, HENKET M, MOERMANS C, et al. A blood exosomal miRNA signature in acute respiratory distress syndrome[J]. Front Mol Biosci, 2021, 8: 640042.
|
7 |
JOHNSON K, LEARY P J, GOVAERE O, et al. Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: diagnostic and mechanistic relevance[J]. JHEP Rep, 2021, 4(2): 100409.
|
8 |
ROY S, BENZ F, VARGAS CARDENAS D, et al. MiR-30c and miR-193 are a part of the TGF-β- dependent regulatory network controlling extracellular matrix genes in liver fibrosis[J]. J Dig Dis, 2015, 16(9): 513-524.
|
9 |
宋 萍. Wnt/β-catenin信号通路在肺纤维化形成中的机制研究[D]. 镇江: 江苏大学, 2014.
|
10 |
马绍磊, 王宇杰, 左祥荣, 等. 内毒素诱导ARDS对大鼠右心功能的影响[J]. 中华危重病急救医学, 2018, 30(3): 204-208.
|
11 |
马绍磊, 左祥荣, 王宇杰, 等. 4 -苯基丁酸钠通过减轻内质网应激对大鼠ARDS相关右心功能障碍的保护作用[J]. 中华危重病急救医学, 2019, 31(10): 1269-1274.
|
12 |
赵赞梅, 赵金垣. 黄芩苷对急性呼吸窘迫综合征大鼠心功能的影响[J]. 环境与职业医学, 2011, 28(9): 517-520.
|
13 |
姜黎珊, 姚 明, 杨茂宪, 等. 不同方式下气管内滴注脂多糖方法制作急性呼吸窘迫综合征大鼠模型[J]. 中华危重症医学杂志(电子版), 2019, 12(2): 80-84.
|
14 |
PRASERTSAN P, ANUNTASEREE W, RUANGNAPA K, et al. Severity and mortality predictors of pediatric acute respiratory distress syndrome according to the pediatric acute lung injury consensus conference definition[J]. Pediatr Crit Care Med, 2019, 20(10): e464-e472.
|
15 |
PANICO F F, TROSTER E J, OLIVEIRA C S, et al. Risk factors for mortality and outcomes in pediatric acute lung injury/acute respiratory distress syndrome[J]. Pediatr Crit Care Med, 2015, 16(7): e194-e200.
|
16 |
BOWMAN W S, ECHT G A, OLDHAM J M. Biomarkers in progressive fibrosing interstitial lung disease: optimizing diagnosis, prognosis, and treatment response[J]. Front Med, 2021, 8: 680997.
|
17 |
THANNICKAL V J, TOEWS G B, WHITE E S, et al. Mechanisms of pulmonary fibrosis[J]. Annu Rev Med, 2004, 55: 395-417.
|
18 |
RIM E Y, CLEVERS H, NUSSE R. The Wnt pathway: from signaling mechanisms to synthetic modulators[J]. Annu Rev Biochem, 2022, 91: 571-598.
|
19 |
WANG Z, LI Z L, JI H T. Direct targeting of β-catenin in the Wnt signaling pathway: current progress and perspectives[J]. Med Res Rev, 2021, 41(4): 2109-2129.
|
20 |
丁文君, 沈明霞, 谢海彬, 等. Wnt/β-catenin信号通路相关调控因子在气虚血瘀型特发性肺纤维化中的动态表达研究[J]. 中医研究, 2023, 36(4): 71-74.
|
21 |
黄 晶, 孙兆瑞, 杨志洲, 等. 调控Wnt信号通路对百草枯中毒大鼠肺纤维化的影响[J]. 医学研究生学报, 2017, 30(3): 228-232.
|
22 |
QIAN W B, CAI X R, QIAN Q H, et al. Metastasis-associated protein 1 promotes epithelial-mesenchymal transition in idiopathic pulmonary fibrosis by up-regulating Snail expression[J]. J Cell Mol Med, 2020, 24(11): 5998-6007.
|
23 |
WANG Y, LI S L, ZHAO J, et al. Snail-mediated partial epithelial mesenchymal transition augments the differentiation of local lung myofibroblast[J]. Chemosphere, 2021, 267: 128870.
|
24 |
潘军强, 张殿新, 孙超峰, 等. α-SMA与瓣膜性心房颤动患者心房纤维化的关系[J]. 西安交通大学学报(医学版), 2017, 38(2): 242-246.
|
25 |
涂容芳, 张秀峰, 何振华. 5-HTR2B、E-cad、α-SMA在博莱霉素致大鼠肺纤维化中的表达变化[J]. 中国应用生理学杂志, 2016, 32(4): 365-369.
|
26 |
WANG S H, CHEN Y, LEI G L, et al. Serum exosome-derived microRNA-193a-5p and miR-381-3p regulate adenosine 5'-monophosphate-activated protein kinase/transforming growth factor beta/Smad2/3 signaling pathway and promote fibrogenesis[J]. Clin Transl Gastroenterol, 2024, 15(2): e00662.
|
27 |
HU H, MAO G Y, ZHENG J H, et al. Keloid patient plasma-derived exosomal hsa_circ_0020792 promotes normal skin fibroblasts proliferation, migration, and fibrogenesis via modulating miR-193a-5p and activating TGF-β1/Smad2/3 signaling[J]. Drug Des Devel Ther, 2022, 16: 4223-4234.
|
28 |
TAN L L, CHEN Z H. MiR-193a-5p enhances the radioresistance of pancreatic cancer cells by targeting ZFP57 and activating the Wnt pathway[J]. J Oncol, 2022, 2022: 8071343.
|