[1] 朱广迎. 放射肿瘤学[M]. 2版. 北京:科学技术文献出版社, 2005.
[2] Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology[J]. Int J Radiat Biol, 1989, 56(6):1045-1048.
[3] Hall JS, Iype R, Senra J, et al. Investigation of radiosensitivity gene signatures in cancer cell lines[J]. PLoS One, 2014, 9(1):e86329.
[4] 龚守良. 辐射细胞生物学[M].北京:中国原子能出版社, 2014:55-57.
[5] 孙建湘, 孙伟建, 隋建丽, 等. DNA双链断裂残留损伤与癌细胞辐射敏感性研究[J]. 中华放射医学与防护杂志, 2008, 28(5):495-499.
[6] Gurská S, Farkasová T, Gábelová A. Radiosensitivity of cervical cancer cell lines:the impact of polymorphisms in DNA repair genes[J]. Neoplasma, 2007, 54(3):195-201.
[7] Clarke RH, Moosa S, Anzivino M, et al. Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment inan animal model of glioblastoma and in vitro models of tumor hypoxia[J]. PLoS One, 2014, 9(10):e111199.
[8] Zhang YC, Jiang G, Gao H, et al. Influence of ionizing radiation on ovarian carcinoma SKOV-3 xenografts in nude mice under hypoxic conditions[J]. Asian Pac J Cancer Prev, 2014, 15(5):2353-2358.
[9] He WS, Dai XF, Jin M, et al. Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation[J]. Oncol Res, 2012, 20(5/6):251-258.
[10] Liu C, Lin Q, Yun Z. Cellular and molecular mechanisms underlyingoxygen-dependent radiosensitivity[J]. Radiat Res, 2015, 183(5):487-496.
[11] Li ZZ, Bao SD, Wu QL, et al. Hypoxia-Inducible factors Regulate tumorigenic capacity of glioma stem cells[J]. Cancer Cell, 2009, 15(6):501-513.
[12] Heddleston JM, Li Z, Lathia JD, et al. Hypoxia inducible factors in cancer stem cells[J]. Br J Cancer, 2010, 102(5):789-795.
[13] Li L, Neaves WB. Normal stem cells and cancer stem cells:the niche matters[J]. Cancer Res, 2006, 66(9):4553-4557.
[14] Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120):756-760.
[15] Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance:potential role of hypoxia[J]. Cancer Lett, 2013, 341(1):63-72.
[16] Hennequin C, Quero L, Favaudon V. DNA repair and tumour radiosensitivity:focus on ATM gene[J]. Bull Cancer, 2011, 98(3):239-246.
[17] Kumar A, Rai PS, Upadhya R, et al. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines[J]. Int J Radiat Biol, 2011, 87(11):1086-1096.
[18] Eyler CE, Rich JN. Survival of the fittest:cancer stem cells in therapeutic resistance and angiogenesis[J]. Clin Oncol, 2008, 26(17):2893-2845.
[19] Wang X, Ma Z, Xiao Z, et al. Chk1 knockdown confers radiosensitization in prostate cancer stem cells[J]. Oncol Rep, 2012, 28(6):2247-2254.
[20] Phillips TM, McBride WH, Pajonk F. The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation[J]. J Natl Cancer Inst, 2006, 98(24):1777-1785.
[21] Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhi CD44+ human breast cancer cells[J]. Breast Cancer Res Treat, 2012, 133(1):75-87.
[22] Sun T, Zhang Z, Li B, et al. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro[J]. Radiat Oncol, 2013, 8(1):195.
[23] 田允鸿, 谢国柱, 任陈, 等. 悬浮培养乳腺癌干细胞放疗抵抗与G2期阻滞相关[J]. 南方医科大学学报, 2011, 31(1):53-56.
[24] Ropolo M, Daga A, Griffero F, et al. Comparative analysis of DNA repair in stem and nonstem glioma cell culture[J]. Mol Cancer Res, 2009, 7(3):383-392.
[25] Yin H, Glass J. The phenotypic radiation resistance of CD44+/CD24(-or low) breast cancer cells is mediated through the enhanced activation of ATM signaling[J]. PLoS One, 2011, 6(9):e24080.
[26] Kim SY, Rhee JG, Song XX, et al. Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells:Role of ATM[J]. PLoS One, 2012, 7(11):e50423.
[27] Sun Y, Nelson PS. Molecular pathways:Involving microenvironment damage responses in cancer therapy resistance[J]. Clin Cancer Res, 2012, 18(15):4019-4025.
[28] John-Aryankalayil M, Palayoor ST, Cerna D, et al. Fractionated radiation therapy can induce a molecular profile for therapeutic targeting[J]. Radiat Res, 2010, 174:446-458.
[29] Chargari C, Clemenson C, Martins I, et al. Understanding the functions of tumor stroma in resistance to ionizing radiation:emerging targets for pharmacological modulation[J]. Drug Resist Updat, 2013, 16(1/2):10-21.
[30] Atkinson MJ. Radiation treatment effects on the proteome of the tumour microenvironment[J]. Adv Exp Med Biol, 2013, 990:49-60.
[31] D'Andrea FP. Intrinsic radiation resistance of mesenchymal cancer stem cells and implications for treatment response in a murine sarcoma model[J]. Dan Med J, 2012, 59(2):B4388.
[32] H ckel M, Vaupel P. Tumor hypoxia:definitions and current clinical, biologic, and molecular aspects[J]. J Natl Cancer Inst, 2001, 93(4):266-276.
[33] Phillips TM, McBride WH, Pajonk F. The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation[J]. J Natl Cancer Inst, 2006, 98(24):1777-1785.
[34] Hardee ME, Marciscano AE, Medina-Ramirez CM, et al. Resistance of glioblatoma initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth faxtor-β (TGFβ)[J]. Cancer Res, 2012, 72(16):4119-4129.
[35] Ahmed SU, Carruthers R, Gilmour L, et al. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells[J]. Cancer Res, 2015, 75(20):4416-4428.
[36] Teng BT, Pei XM, Tam EW, et al. Opposing responses of apoptosis and autophagy to moderate compression in skeletal muscle[J]. Acta Physiol (Oxf), 2011, 201(2):239-254.
[37] Di CX, Yang LN, Zhang H, et al. Effects of carbon-ion beam or X-ray irradiation on anti-apoptosis ΔNp73 expression in HeLa cells[J]. Gene, 2013, 515(1):208-213.
[38] Wang WJ, Long LM, Yang N, et al. NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro[J]. Acta Pharmacol Sin, 2013, 34(5):681-690.
[39] Zeng XH, Kinsella TJ. Impact of autophagy on chemotherapy and radiotherapy mediated tumor cytotoxicity: "to live or not to live"[J]. Front Oncol, 2011, 1:30.
[40] 齐亚莉, 王俊, 李岩, 等. 电离辐射联合自噬和凋亡抑制剂或诱导剂对MCF7细胞的影响[J]. 中华放射医学与防护杂志, 2010, 30(3):263-266.
[41] 陈清凤, 朱永坚, 曾群力. 射线诱发的细胞自噬效应的研究进展[J]. 中国劳动卫生职业病杂志, 2011, 29(6):473-475.
[42] Chaachouay H, Ohneseit P, Toulany M, et al. Autophagy contributes to resistance of tumor cells to ionizing radiation[J]. Radiother Oncol, 2011, 99(3):287-292.
[43] Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8[J]. Science, 2004, 304(5676):1500-1502.
[44] Zhong R, Xu H, Chen G, et al. The role of hypoxia-inducible factor-1α in radiation-induced autophagic cell death in breast cancer cells[J]. Tumour Biol, 2015, 36(9):7077-7083.
[45] Sun Y, Xing X, Liu Q, et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells[J]. Int J Oncol, 2015, 46(2):750-756.
[46] Vessoni AT, Muotri AR, Okamoto OK. Autophagy in stem cell maintenance and differentiation[J]. Stem Cells Dev, 2012, 21(4):513-520.
[47] Zhuang W, Li B, Long L, et al. Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity[J]. Int J Cancer, 2011, 129(11):2720-2731. |