Journal of Jilin University(Medicine Edition) ›› 2020, Vol. 46 ›› Issue (6): 1332-1337.doi: 10.13481/j.1671-587x.20200635
• Review • Previous Articles
Received:
2020-06-20
Online:
2020-11-28
Published:
2022-08-24
CLC Number:
1 | 高向东, 薄庭亮, 薄菱君. 溃疡性结肠炎结肠气钡双重造影检查的探讨 [J]. 山西医药杂志, 2002, 31(4): 316-317. |
2 | 杨 敏. 多层螺旋 CT 和 MRI 对结直肠癌术前 TN 分期的对比研究 [J]. 影像研究与医学应用, 2020, 4(2):59-60. |
3 | 陈浩漩, 邓志灏, 董玉杰. 703例电子结肠镜检查结果的回顾性分析 [J]. 中国医疗器械信息, 2020, 9:175. |
4 | PAULING L, ROBINSON A B, TERANISHI R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. PNAS, 1971, 68(10):2374-2376. |
5 | WILLIAMS H, PEMBROKE A. Sniffer dogs in the melanoma clinic? [J]. Lancet, 1989, 1(8640): 734. |
6 | WILLIS C M, CHURCH S M, GUEST C M, et al. Olfactory detection of human bladder cancer by dogs: proof of principle study[J]. BMJ, 2004, 329(7468): 712. |
7 | IBRAHIM W, WILDE M, CORDELL R, et al. Assessment of breath volatile organic compounds in acute cardiorespiratory breathlessness: a protocol describing a prospective real-world observational study[J]. BMJ Open, 2019, 9(3): e025486. |
8 | ESFAHANI S, WICAKSONO A, MOZDIAK E, et al. Non-invasive diagnosis of diabetes by volatile organic compounds in urine using FAIMS and Fox4000 electronic nose[J]. Biosensors (Basel), 2018, 8(4): E121. |
9 | ASHRAFI M, BATES M, BAGUNEID M, et al. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections[J]. Wound Repair Regen, 2017, 25(4): 574-590. |
10 | PROBERT C S, READE S, AHMED I. Fecal volatile organic compounds: a novel, cheaper method of diagnosing inflammatory bowel disease?[J]. Expert Rev Clin Immunol, 2014, 10(9): 1129-1131. |
11 | SMITH D, ŠPANĚL P. On the importance of accurate quantification of individual volatile metabolites in exhaled breath[J]. J Breath Res, 2017, 11(4): 047106. |
12 | AMANN A, MOCHALSKI P, RUZSANYI V, et al. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties[J]. J Breath Res, 2014, 8(1): 016003. |
13 | AMANN A, COSTELLO B D E L, MIEKISCH W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. J Breath Res, 2014, 8(3): 034001. |
14 | DRNGONIERI S, PENNAZZA G, CARRATU P, et al. Electronic nose technology in respiratory diseases [J]. Lung, 2017, 195(2): 157-165. |
15 | PERSAUD K, DODD G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J]. Nature, 1982, 299(5881): 352-355. |
16 | AMOORE J E, JOHNSTON J W Jr, RUBIN M. The sterochemical theory of odor[J]. Sci Am, 1964, 210: 42-49. |
17 | KAUER J S. Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway[J]. Trends Neurosci, 1991, 14(2): 79-85. |
18 | GARDNER J W, BARTLETT P N. A brief history of electronic noses[J]. Sensor Actuat B Chem, 1994, 18(1-3): 210-211. |
19 | KONONOV A, KOROTETSKY B, JAHATSPANIAN I, et al. Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer[J]. J Breath Res, 2019, 14(1): 016004. |
20 | LUCKLUM R, HAUPTMANN P. The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification [J]. Sensor Actuat B Chem, 2000(1-3), 70: 30-36. |
21 | YANG S, JIANG C, WEI S. Gas sensing in 2D materials [J]. Appl Phys Rev, 2017, 4: 021304. |
22 | PARK C, FERGUS J W, MIURA N, et al. Solid-state electrochemical gas sensors[J]. Ionics, 2009, 15(3): 261-284. |
23 | DONG W J, ZHAO J P, HU R S, et al. Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics[J]. Food Chem, 2017, 229: 743-751. |
24 | KODOGIANNIS V S. Application of an electronic nose coupled with Fuzzy-Wavelet network for the detection of meat spoilage [J]. Food Bioprocess Technol, 2017, 10(4): 730-749. |
25 | HERRERO J L, LOZANO J, SANTOS J P, et al. On-line classification of pollutants in water using wireless portable electronic noses [J]. Chemosphere, 2016, 152: 107-116. |
26 | ZHOU C, WU Z, GUO Y, et al. Ultrasensitive, real-time and discriminative detection of improvised explosives by chemiresistive thin-film sensory array of Mn2+ tailored hierarchical ZnS [J]. Sci Rep, 2016, 6: 25588. |
27 | BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].CA Cancer J Clin, 2018, 68: 394–424. |
28 | PENG G, HAKIM M, BROZA Y Y, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors[J]. Br J Cancer, 2010, 103(4): 542-551. |
29 | DE GOOR R MVAN, LEUNIS N, RVAN HOOREN M, et al. Feasibility of electronic nose technology for discriminating between head and neck, bladder, and colon carcinomas[J]. Eur Arch Otorhinolaryngol, 2017, 274(2): 1053-1060. |
30 | WESTENBRINK E, ARASARADNAM R P, O'CONNELL N, et al. Development and application of a new electronic nose instrument for the detection of colorectal cancer[J]. Biosens Bioelectron, 2015, 67: 733-738. |
31 | DE MEIJ T G, LARBI I B, SCHEE M PVAN DER, et al. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: proof of principle study[J]. Int J Cancer, 2014, 134(5): 1132-1138. |
32 | ALTOMARE D F, PORCELLI F, PICCIARIELLO A, et al. The use of the PEN3 e-nose in the screening of colorectal cancer and polyps[J]. Tech Coloproctol, 2016, 20(6): 405-409. |
33 | EVAN KEULEN K, JANSEN M E, SCHRAUWEN R W M, et al. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer[J]. Aliment Pharmacol Ther, 2020, 51(3): 334-346. |
34 | ZONTA G, ANANIA G, FABBRI B, et al. Preventive screening of colorectal cancer with a device based on chemoresistive sensors[J]. Sensor Actuat B Chem, 2017, 238: 1098-1101. |
35 | ZONTA G, ANANIA G, DE TOGNI A, et al. Use of gas sensors and FOBT for the early detection of colorectal cancer[J]. Proceedings, 2017, 1(4): 398. |
36 | KNIGHTS D, LASSEN K G, XAVIER R J. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome[J]. Gut, 2013, 62(10): 1505-1510. |
37 | ARASARADNAM R P, QURAISHI N, KYROU I, et al. Insights into ‘fermentonomics’: evaluation of volatile organic compounds (VOCs) in human disease using an electronic ‘e-nose’[J]. J Med Eng Technol, 2011, 35(2): 87-91. |
38 | ARASARADNAM R P, OUARET N, THOMAS M G, et al. A novel tool for noninvasive diagnosis and tracking of patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2013, 19(5): 999-1003. |
39 | TIELE A, WICAKSONO A, KANSARA J, et al. Breath analysis using eNose and ion mobility technology to diagnose inflammatory bowel disease-A pilot study[J]. Biosensors (Basel), 2019, 9(2): E55. |
40 | DE MEIJ T G, DE BOER N K, BENNINGA M A, et al. Faecal gas analysis by electronic nose as novel, non-invasive method for assessment of active and quiescent paediatric inflammatory bowel disease: Proof of principle study[J]. J Crohns Colitis, 2014: S1873-S9946(14)00285-2. |
41 | RICH B S, DOLGIN S E. Necrotizing enterocolitis [J]. Pediatr Rev, 2017, 38(12): 552-559. |
42 | DE MEIJ T G, SCHEE M PVAN DER, BERKHOUT D J, et al. Early detection of necrotizing enterocolitis by fecal volatile organic compounds analysis[J]. J Pediatr, 2015, 167(3): 562-567. |
43 | BERKHOUT D J C, NIEMARKT H J, BUIJCK M, et al. Detection of sepsis in preterm infants by fecal volatile organic compounds analysis: a proof of principle study[J]. J Pediatr Gastroenterol Nutr, 2017, 65(3): e47-e52. |
[1] | Qi LIU,Xin XU,Zhenggen WANG. Effect of calycosin on intestinal mucosal barrier function in cirrhosis rats and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2022, 48(2): 391-398. |
[2] | LI Jia, YANG Luoluo, ZHOU Changli, HE Ping, SUN Xun, MENG Xiangwei. Analysis on risk factors related to incidence of patientswithcolorectal polyps [J]. Journal of Jilin University Medicine Edition, 2018, 44(03): 646-650. |
[3] | . Research progress in role of IL-10 cytokine family in intestinal fibrosis [J]. Journal of Jilin University Medicine Edition, 2017, 43(04): 849-851. |
[4] | LIU Yang, LIU Zhi, LI Fenge, KONG Fanli. Therapeutic effect of mosapride citrate on gastrointestinal tract function disorder of patients with Parkinson's syndrome [J]. Journal of Jilin University Medicine Edition, 2017, 43(01): 125-129. |
[5] | LI Hui,ZHAO Li-jing,DU Yu,YANG Tie-zheng,LI Guo-feng,CHEN Liang,ZHI Chen-yang,LI Na,ZHOU Jian-hua. Therapeutic effect of suppository of Jiechang An combined with Shuxue Ning on rats with ulcerative colitis and their mechanisms [J]. Journal of Jilin University Medicine Edition, 2013, 39(3): 488-493. |
[6] | WANG Min, JI Fu-jian, JIN Hong-yong,CHEN Xue-bo, YU Jie, FANG Xue-dong. Analysis of clinico-pathologic features on |metastasis of |lymph nodes around rectum in patients with rectal carcinoma [J]. J4, 2011, 37(2): 345-350. |
[7] | WANG Zhe, JIANG Yi-Zhong, SONG Yang, ZHOU Chang-Yu. Changes of clotting function indexes in elder patients with ulcerative colitis and significances [J]. J4, 2009, 35(3): 553-555. |
[8] | CHEN Xi,YANG Shi-zhong,CHI Bao-rong. Reproduction of rat inflammatory bowel disease model and intervention effect of Changkangyin on it [J]. J4, 2008, 34(2): 262-265. |
[9] | YU Jin-hai,SOU Jian,LI You-zhu,WANG Zhong-yi,LIU Guo-hui,WANG Quan. Inhibitory effect of Fe3+-CMC on expressions of TGF-β and FGF [J]. J4, 2007, 33(6): 1026-1028. |
[10] | . Clinical application of nutrision in intestinal preparing before colonoscopy [J]. J4, 2005, 31(1): 142-143. |
[11] | . Clinical significances of mean platelet volume and D-dipolymerin patients with inflammatory bowel disease [J]. J4, 2004, 30(6): 947-948. |
[12] | . Clinical curative effects of ChangYanKang oral liquid for ulcerative colitis [J]. J4, 2004, 30(5): 785-786. |
[13] | LI Tiantian, YANG Lanlan, JIA Shengnan, JIN Zhenjing. A case report of diagnosis and treatment of abdominal cocoon and literature review [J]. Journal of Jilin University Medicine Edition, 2015, 41(01): 172-174. |
[14] | WANG Liying, YANG Yong, LI Zhandong, LI Dongfu, LIU Libin, WANG Min. Therapentic effect of siRNA inhibiting CD40 expression in dendritic cells on inflammatory bowel disease in rats [J]. Journal of Jilin University Medicine Edition, 2015, 41(01): 54-59. |
|