1 |
SHINDE A V, FRANGOGIANNIS N G. Fibroblasts in myocardial infarction: a role in inflammation and repair[J]. J Mol Cell Cardiol, 2014, 70: 74-82.
|
2 |
DOBACZEWSKI M, DE HAAN J J, FRANGOGIANNIS N G. The extracellular matrix modulates fibroblast phenotype and function in the infarcted myocardium[J]. J Cardiovasc Transl Res, 2012, 5(6): 837-847.
|
3 |
FRANGOGIANNIS N G. The inflammatory response in myocardial injury, repair, and remodelling[J]. Nat Rev Cardiol, 2014, 11(5): 255-265.
|
4 |
KONG P, CHRISTIA P, FRANGOGIANNIS N G. The pathogenesis of cardiac fibrosis[J]. Cell Mol Life Sci, 2014, 71(4): 549-574.
|
5 |
ORNITZ D M, ITOH N. The fibroblast growth factor signaling pathway[J]. Wiley Interdiscip Rev Dev Biol, 2015, 4(3): 215-266.
|
6 |
ORNITZ D M, MARIE P J. Fibroblast growth factor signaling in skeletal development and disease[J]. Genes Dev, 2015, 29(14): 1463-1486.
|
7 |
WANG Y G, WANG D, WU C, et al. MMP 9-instructed assembly of bFGF nanofibers in ischemic myocardium to promote heart repair[J]. Theranostics, 2022, 12(17): 7237-7249.
|
8 |
FORMIGA F R, TAMAYO E, SIMÓN-YARZA T, et al. Angiogenic therapy for cardiac repair based on protein delivery systems[J]. Heart Fail Rev, 2012, 17(3): 449-473.
|
9 |
AWADA H K, JOHNSON N R, WANG Y D. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction[J]. J Control Release, 2015, 207: 7-17.
|
10 |
RAO Z H, SHEN D P, CHEN J H, et al. Basic fibroblast growth factor attenuates injury in myocardial infarction by enhancing hypoxia-inducible factor-1 alpha accumulation[J]. Front Pharmacol, 2020, 11: 1193.
|
11 |
LI P, HU J J, WANG J, et al. The role of hydrogel in cardiac repair and regeneration for myocardial infarction: recent advances and future perspectives[J]. Bioengineering, 2023, 10(2): 165.
|
12 |
AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. J Adv Res, 2015, 6(2): 105-121.
|
13 |
MAMIDI N, VELASCO DELGADILLO R M, BARRERA E V. Covalently functionalized carbon nano-onions integrated gelatin methacryloyl nanocomposite hydrogel containing γ-cyclodextrin as drug carrier for high-performance pH-triggered drug release[J]. Pharmaceuticals, 2021, 14(4): 291.
|
14 |
宋潼潼, 惠文婷, 顾逸雯, 等. 水凝胶负载bFGF对氧糖剥夺条件下树突状细胞的影响[J/OL]. 中国免疫学杂志, 2023: 1-8. (2023-05-15). .
|
15 |
LI P, FENG Z P, YU Z Y, et al. Preparation of chitosan-Cu2+/NH3 physical hydrogel and its properties[J]. Int J Biol Macromol, 2019, 133: 67-75.
|
16 |
WANG X, SONG T T, SUN Y P, et al. Proteomic analysis reveals the effect of trichostatin A and bone marrow-derived dendritic cells on the fatty acid metabolism of NIH3T3 cells under oxygen-glucose deprivation conditions[J]. J Proteome Res,2021,20(1): 960-971.
|
17 |
ZHOU X H, HE X L, SHI K, et al. Injectable thermosensitive hydrogel containing erlotinib-loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC therapy[J]. Adv Sci, 2020, 7(23): 2001442.
|
18 |
FAN C X, SHI J J, ZHUANG Y, et al. Myocardial-infarction-responsive smart hydrogels targeting matrix metalloproteinase for on-demand growth factor delivery[J]. Adv Mater, 2019, 31(40): e1902900.
|
19 |
VAN DEN BORNE S W M, DIEZ J, BLANKESTEIJN W M, et al. Myocardial remodeling after infarction: the role of myofibroblasts[J]. Nat Rev Cardiol, 2010, 7(1): 30-37.
|
20 |
ROG-ZIELINSKA E A, NORRIS R A, KOHL P,et al.The living scar: cardiac fibroblasts and the injured heart[J]. Trends Mol Med, 2016, 22(2): 99-114.
|
21 |
LIU J, ZHANG M M, QIN C S, et al. Resveratrol attenuate myocardial injury by inhibiting ferroptosis via inducing KAT5/GPX4 in myocardial infarction[J]. Front Pharmacol, 2022, 13: 906073.
|
22 |
GONZÁLEZ-SANTAMARÍA J, VILLALBA M, BUSNADIEGO O, et al. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction[J]. Cardiovasc Res, 2016, 109(1): 67-78.
|
23 |
SINGH D, RAI V, AGRAWAL D K. Regulation of collagen Ⅰ and collagen Ⅲ in tissue injury and regeneration[J].Cardiol Cardiovasc Med,2023,7(1):5-16.
|
24 |
GUO Z, FAN D, LIU F Y, et al. NEU1 regulates mitochondrial energy metabolism and oxidative stress post-myocardial infarction in mice via the SIRT1/PGC-1 alpha axis[J]. Front Cardiovasc Med, 2022, 9: 821317.
|
25 |
LIN Y J, WANG Y, LI P F. Mutual regulation of lactate dehydrogenase and redox robustness[J]. Front Physiol, 2022, 13: 1038421.
|
26 |
ZHANG Z, ZHAO X R, GAO M, et al. Dioscin alleviates myocardial infarction injury via regulating BMP4/NOX1-mediated oxidative stress and inflammation[J]. Phytomedicine, 2022, 103: 154222.
|