Journal of Jilin University(Medicine Edition) ›› 2024, Vol. 50 ›› Issue (4): 1182-1188.doi: 10.13481/j.1671-587X.20240435
• Review • Previous Articles
Xiaomin FU,Jianling JIA,Yanhong DOU,Wenyong REN,Aiping SHI()
Received:
2023-09-30
Online:
2024-07-28
Published:
2024-08-01
Contact:
Aiping SHI
E-mail:sap@jlu.edu.cn
CLC Number:
Xiaomin FU,Jianling JIA,Yanhong DOU,Wenyong REN,Aiping SHI. Research progress in effect of intestinal flora on occurrence and development of breast cancer and its therapeutic application[J].Journal of Jilin University(Medicine Edition), 2024, 50(4): 1182-1188.
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2021,71(3):209-249. |
2 | ARNOLD M, MORGAN E, RUMGAY H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040[J]. Breast, 2022, 66: 15-23. |
3 | WU M H, CHOU Y C, CHOU W Y, et al. Relationships between critical period of estrogen exposure and circulating levels of insulin-like growth factor-Ⅰ (IGF-Ⅰ) in breast cancer: evidence from a case-control study[J]. Int J Cancer, 2010, 126(2): 508-514. |
4 | FU A K, YAO B Q, DONG T T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185(8): 1356-1372.e26. |
5 | NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J].Science,2020,368(6494): 973-980. |
6 | PARIDA S, WU S G, SIDDHARTH S, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates Notch and β-catenin axes[J]. Cancer Discov, 2021, 11(5): 1138-1157. |
7 | XUAN C Y, SHAMONKI J M, CHUNG A, et al. Microbial dysbiosis is associated with human breast cancer[J]. PLoS One, 2014, 9(1): e83744. |
8 | TERRISSE S, DEROSA L, IEBBA V, et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment[J]. Cell Death Differ, 2021, 28(9): 2778-2796. |
9 | BAEK A E. Bacteria benefit tumor cells[J]. Sci Signal, 2022, 15(729): eabq4492. |
10 | WU A H, TSENG C, VIGEN C, et al. Gut microbiome associations with breast cancer risk factors and tumor characteristics: a pilot study[J]. Breast Cancer Res Treat, 2020, 182(2): 451-463. |
11 | GRUBER C J, TSCHUGGUEL W, SCHNEEBERGER C, et al. Production and actions of estrogens[J]. N Engl J Med, 2002, 346(5): 340-352. |
12 | GRAY J M, RASANAYAGAM S, ENGEL C, et al. State of the evidence 2017: an update on the connection between breast cancer and the environment[J]. Environ Health, 2017, 16(1): 94. |
13 | PARIDA S, SHARMA D. The microbiome-estrogen connection and breast cancer risk[J].Cells,2019,8(12): 1642. |
14 | ADLERCREUTZ H, MARTIN F. Biliary excretion and intestinal metabolism of progesterone and estrogens in man[J]. J Steroid Biochem, 1980, 13(2): 231-244. |
15 | KWA M, PLOTTEL C S, BLASER M J, et al. The intestinal microbiome and estrogen receptor-positive female breast cancer[J].J Natl Cancer Inst,2016,108(8): djw029. |
16 | HU S W, DING Q Y, ZHANG W, et al. Gut microbial beta-glucuronidase: a vital regulator in female estrogen metabolism[J]. Gut Microbes, 2023, 15(1): 2236749. |
17 | MOORE S C, MATTHEWS C E, OU-SHU X, et al. Endogenous estrogens, estrogen metabolites, and breast cancer risk in postmenopausal Chinese women[J]. J Natl Cancer Inst, 2016, 108(10):103. |
18 | ROSENBERG L, BETHEA T N, VISCIDI E, et al. Postmenopausal female hormone use and estrogen receptor-positive and-negative breast cancer in African American women[J].J Natl Cancer Inst,2016,108(4): 361. |
19 | ZACKSENHAUS E, SHRESTHA M, LIU J C, et al. Mitochondrial OXPHOS induced by RB1 deficiency in breast cancer: implications for anabolic metabolism, stemness,and metastasis[J].Trends Cancer,2017,3(11): 768-779. |
20 | SOTGIA F, LISANTI M P. Mitochondrial mRNA transcripts predict overall survival, tumor recurrence and progression in serous ovarian cancer: companion diagnostics for cancer therapy[J].Oncotarget,2017,8(40): 66925-66939. |
21 | REDDY B S, HANSON D, MANGAT S, et al. Effect of high-fat, high-beef diet and of mode of cooking of beef in the diet on fecal bacterial enzymes and fecal bile acids and neutral sterols[J]. J Nutr, 1980, 110(9): 1880-1887. |
22 | MCINTOSH F M, MAISON N, HOLTROP G, et al. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities[J]. Environ Microbiol, 2012, 14(8): 1876-1887. |
23 | DABEK M, MCCRAE S I, STEVENS V J, et al. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria[J].FEMS Microbiol Ecol,2008,66(3): 487-495. |
24 | REDDY B S, ENGLE A, SIMI B, et al. Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer[J]. Gastroenterology, 1992, 102(5): 1475-1482. |
25 | ADLERCREUTZ H, MARTIN F, PULKKINEN M, et al. Intestinal metabolism of estrogens[J]. J Clin Endocrinol Metab, 1976, 43(3): 497-505. |
26 | XIE W J, HUANG Y F, XIE W L, et al. Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells[J]. PLoS One, 2010, 5(5): e10850. |
27 | MIKÓ E, VIDA A, KOVÁCS T, et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9): 958-974. |
28 | PARK H S, HAN J H, PARK J W, et al. Sodium propionate exerts anticancer effect in mice bearing breast cancer cell xenograft by regulating JAK2/STAT3/ROS/p38 MAPK signaling[J].Acta Pharmacol Sin,2021,42(8): 1311-1323. |
29 | MA H, YU Y, WANG M M, et al. Correlation between microbes and colorectal cancer: tumor apoptosis is induced by sitosterols through promoting gut microbiota to produce short-chain fatty acids[J]. Apoptosis, 2019, 24(1/2): 168-183. |
30 | DONALDSON G P, LADINSKY M S, YU K B,et al. Gut microbiota utilize immunoglobulin A for mucosal colonization[J]. Science, 2018, 360(6390): 795-800. |
31 | YANG Y B, LI L L, XU C J, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis[J]. Gut, 2020, 70(8): 1495-1506. |
32 | MA J, SUN L Q, LIU Y, et al. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer[J]. BMC Microbiol, 2020, 20(1): 82. |
33 | WANG H, RONG X Y, ZHAO G, et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4): 581-594. |
34 | LI Y Y, DONG B B, WU W, et al. Metagenomic analyses reveal distinct gut microbiota signature for predicting the neoadjuvant chemotherapy responsiveness in breast cancer patients[J]. Front Oncol, 2022, 12: 865121. |
35 | ZHANG Y Y, ZHANG Z M. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020, 17(8): 807-821. |
36 | WU S Y, XU Y, CHEN L, et al. Combined angiogenesis and PD-1 inhibition for immunomodulatory TNBC: concept exploration and biomarker analysis in the FUTURE-C-Plus trial[J].Mol Cancer,2022,21(1): 84. |
37 | MAGER L F, BURKHARD R, PETT N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy[J]. Science, 2020, 369(6510): 1481-1489. |
38 | ROUTY B, CHATELIER E L, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. |
39 | VÉTIZOU M, PITT J M, DAILLÈRE R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084. |
40 | GURBATRI C R, LIA I, VINCENT R, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies[J]. Sci Transl Med, 2020, 12(530): eaax0876. |
41 | DAILLÈRE R, VÉTIZOU M, WALDSCHMITT N, et al. Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects[J]. Immunity, 2016, 45(4): 931-943. |
42 | LV Z, LIU R D, SU K Q, et al. Acupuncture ameliorates breast cancer-related fatigue by regulating the gut microbiota-gut-brain axis[J]. Front Endocrinol, 2022, 13: 921119. |
43 | BULTMAN S J. Emerging roles of the microbiome in cancer[J]. Carcinogenesis, 2014, 35(2): 249-255. |
44 | LOZUPONE C A, STOMBAUGH J I, GORDON J I, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. |
45 | 张晨宇, 单忠艳. 肠道菌群及其代谢产物在 2 型糖尿病中的作用研究进展[J]. 中国实用内科杂志,2023, 43(8): 682-687. |
46 | APETOH L, GHIRINGHELLI F, TESNIERE A,et al.Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy[J]. Nat Med, 2007, 13(9): 1050-1059. |
47 | SHIAO S L, KERSHAW K M, LIMON J J, et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy[J]. Cancer Cell, 2021, 39(9): 1202-1213.e6. |
48 | URIBE-HERRANZ M, RAFAIL S, BEGHI S, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response[J]. J Clin Invest, 2020, 130(1): 466-479. |
49 | MITRA A, GROSSMAN BIEGERT G W, DELGADO A Y, et al. Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2020, 107(1): 163-171. |
50 | REIS FERREIRA M, ANDREYEV H J N, MOHAMMED K, et al. Microbiota- and radiotherapy-induced gastrointestinal side-effects (MARS) study: a large pilot study of the microbiome in acute and late-radiation enteropathy[J].Clin Cancer Res,2019,25(21): 6487-6500. |
51 | LIU J, LIU C, YUE J B. Radiotherapy and the gut microbiome: facts and fiction[J]. Radiat Oncol, 2021, 16(1): 9. |
52 | CUI M, XIAO H W, LUO D, et al. Circadian rhythm shapes the gut microbiota affecting host radiosensitivity[J]. Int J Mol Sci, 2016, 17(11): 1786. |
[1] | Xue WEI,Xue WEN,Xiao XIE,Yueyuan WANG,Dan HUANG,Ming YANG. Expression levels and imprinting status of lncRNA H19 and IGF2 genes in breast cancer tissue [J]. Journal of Jilin University(Medicine Edition), 2024, 50(4): 1109-1115. |
[2] | Can ZHANG,Yan CHEN. Research progress in pathogenesis and treatment of gastrointestinal motility disorders in Parkinson’s disease [J]. Journal of Jilin University(Medicine Edition), 2024, 50(1): 280-287. |
[3] | Yuesheng ZHAO,Zubin LI,Haiou LIU,Kunlin TAO,Qihai ZHAO,Na LI. Inhibitory effect of silencing CDKL1 gene on proliferation and invasion of breast cancer MCF-7 cells by regulating PTEN/Akt/mTOR signaling pathway [J]. Journal of Jilin University(Medicine Edition), 2023, 49(5): 1234-1242. |
[4] | Changchun MU,Chunji QUAN,Quanjin JIN,Zhengri PIAO. Expression of thymosin beta4 in breast cancer tissue and its effect on migration and invasion of breast cancer cells [J]. Journal of Jilin University(Medicine Edition), 2023, 49(4): 890-895. |
[5] | Xiuyan YU,Ting LI,Zhanjie CONG,Wenlong WANG,Xiaowei ZHANG,Xuefeng WU. Combined detection of hMAM, SBEM and CEACAM19 mRNA in peripheral blood of breast cancer patients and its clinical significance [J]. Journal of Jilin University(Medicine Edition), 2022, 48(1): 195-202. |
[6] | Xiuyan YU,Chunying TIAN,Xiaowei ZHANG,Xuefeng WU. Clinical significances of serum levels of SBEM, hMAM and CEACAM19 in early diagnosis of breast cancer [J]. Journal of Jilin University(Medicine Edition), 2021, 47(6): 1518-1525. |
[7] | Yang YU,Sainan LIU,Yunkai LIU,Yong LI,Yichun QIAO,Yi CHENG. Bioinformatic analysis on expression characteristics of PRPS2 and its relationship with prognosis of breast cancer [J]. Journal of Jilin University(Medicine Edition), 2021, 47(5): 1229-1236. |
[8] | Pei GONG, Jingran LIU, Shimin ZHAO, Yuzhen WANG, Jiming XIE. Inhibitory effect of MCM10 silencing on proliferation of breast cancer MDA-MB-231 cells and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2021, 47(3): 652-659. |
[9] | Qing WANG,Siqi XIE,Kai ZHENG,Yiyin TANG,Hongwan LI,Hengyu ZHANG,Mingjian TAN,Lei PENG,Dequan LIU,Shicong TANG. Detection of serum vitamin-B levels in breast cancer patients receiving different chemotherapy regimens and its clinical significance [J]. Journal of Jilin University(Medicine Edition), 2021, 47(3): 724-730. |
[10] | Haoxuan TANG,Nanfeng MENG,Meiling DU,Wei WANG,Tao HE. Inhibitory effect of new VEGF monoclonal antibody combined with all-trans retinoic acid on proliferation of breast cancer MCF-7 cells [J]. Journal of Jilin University(Medicine Edition), 2021, 47(2): 344-351. |
[11] | KONG Wencong, HE Wubin, SU Rongjian, JIA Daqi, GU Yanjiao, WANG Yue, DU Xiaoyuan. Inhibitory effect and apoptosisinduction of MST1R inhibitor BMS-777607 on proliferation of breast cancer MCF-7 cells [J]. Journal of Jilin University(Medicine Edition), 2020, 46(03): 451-457. |
[12] | CHEN Zhouhua, GONG Hui, FENG Lei, XIAO Yujie, HUANG Lizhong. Induction of LPS on epithelial mesenchymal transition in breast cancer MDA-MB-231 cells and its effect on β-catenin expression [J]. Journal of Jilin University(Medicine Edition), 2020, 46(02): 309-315. |
[13] | ZHOU Chun, WANG Guanghua, ZHANG Bangzhu. Effects of miR-367 on proliferation, invasion and migration of human breast cancer MCF-7 cells and their mechanisms [J]. Journal of Jilin University(Medicine Edition), 2019, 45(06): 1353-1360. |
[14] | YANG Zhuangqing, LU Mei, YANG Xiaojuan, WANG Chang'an, ZOU Jieya. Inhibitory effect of inhibiting TRIM24 gene expression on proliferation, apopotosis,invasion and migration of breast cancer MCF-7 cells [J]. Journal of Jilin University(Medicine Edition), 2019, 45(06): 1379-1383. |
[15] | YUE Yuan, XU Yinglian, WANG Jingjing, SUN Minying, ZHANG Zenan, ZHAO Xinyue, LI Zongpu, TAI Guixiang. Inhibitory effects of down-regulation of JNK enzymatic activity on growth of human prostate cancer cells, hepatocellular carcinoma cells and breast cancer cells [J]. Journal of Jilin University(Medicine Edition), 2019, 45(05): 1046-1051. |