吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1268-1276.doi: 10.13278/j.cnki.jjuese.20170053
廖东良1,2, 曾义金1,2
Liao Dongliang1,2, Zeng Yijin1,2
摘要: 利用测井资料建立地层剪破裂模型是对现有张破裂的有效补充,有利于完善钻井、压裂等石油工程中的破裂机理。运用FMI(地层微电阻率扫描成像)测井资料能识别钻井诱导缝和剪破裂的方位、数量和密度。本文通过对地层剪破裂的理论研究和影响因素分析,利用内摩擦系数与矿物含量之间的非线性假设,建立了地层剪破裂的临界剪应力模型。研究发现,地层中的黏土矿物含量、内摩擦系数、内聚强度和应力大小是诱发剪破裂的重要因素。利用内摩擦系数(或内摩擦角)与泥质体积分数之间的统计回归模型简化了地层剪破裂模型,并增强了模型的适用性。实际资料表明,地层发生剪破裂时的临界剪应力与钻井诱导缝数量之间呈反比关系,理论研究与实际资料具有良好的一致性。
中图分类号:
[1] 赵金洲,任岚,胡永全,等. 裂缝性地层射孔井破裂压力计算模型[J]. 石油学报,2012,33(5):841-845. Zhao Jinzhou, Ren Lan, Hu Yongquan, et al. A Calculation Model of Breakdown Pressure for Perforated Wells in Fractured Formations[J]. Acta Petrolei Sinica, 2012, 33(5):841-845. [2] 金衍,陈勉,张旭东. 天然裂缝地层斜井水力裂缝起裂压力模型研究[J]. 石油学报,2006,27(5):124-126. Jin Yan, Chen Mian, Zhang Xudong. Hydraulic Fracturing Pressure Models for Vertical Wells in Naturally Fractured Formation[J]. Acta Petrolei Sinica, 2006, 27(5):124-126. [3] 金衍,张旭东,陈勉. 天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J]. 石油学报,2005,26(7):113-118. Jin Yan, Zhang Xudong, Chen Mian. Initiation Pressure Models for Hydraulic Fracturing of Directional Wells in Naturally Fractured Formation[J]. Acta Petrolei Sinica, 2005, 26(7):113-118. [4] 谢海峰,饶秋华,谢强,等. 脆性岩石高温剪切(Ⅱ型)断裂的微观机理[J]. 中国有色金属学报,2008, 18(8):16-20. Xie Haifeng, Rao Qiuhua, Xie Qiang, et al. Plane Shear (Model Ⅱ) Fracture Experiment Analysis of Brittle Rock at High Temperature[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(8):16-20. [5] 李守定,李晓,郭静芸,等. 岩石拉伸剪破裂试验研究[J]. 工程地质学报, 2014, 22(4):655-666. Li Shouding, Li Xiao, Guo Jingyun, et al. Research of Rock Failure Testing Under Combined Shear and Tension[J]. Journal of Engineering Geology, 2014, 22(4):655-666. [6] 吴子科. 脆性岩石裂纹尖端扩展状态的混沌动力学分析[D]. 青岛:山东科技大学,2007. Wu Zhike. Chaotic Analysis on Extended State of Crack in Brittle Rock[D]. Qingdao:Shandong University of Science and Technology, 2007. [7] 牛虎林,胡欣,徐志强,等. 基岩油气藏裂缝性储层的成像测井评价及裂缝预测[J]. 石油学报,2010, 31(2):264-269. Niu Hulin, Hu Xin, Xu Zhiqiang, et al. Evaluation of Imaging Logging and Fracture Prediction in Fractured Basement Reservoirs[J]. Acta Petrolei Sinica, 2010, 31(2):264-269. [8] 周祥. 不同泥质含量砂岩三轴渗透试验研究[J]. 水文地质工程地质,2017, 44(1):84-90. Zhou Xiang. An Experimental Study on Permeability of Sandstone with Different Shale Contents Under 3-D Stress Conditions[J]. Hydrogeology & Engineering Geology, 2017, 44(1):84-90. [9] 丁文龙,漆立新,吕海涛,等. 利用FMI资料分析塔河油田南部中-下奥陶统储层构造应力场[J]. 现代地质,2009, 23(5):852-859. Ding Wenlong, Qi Lixin, Lü Haitao, et al. Analysis of the Lower-Middle Ordovician Reservoir Tectonic Stress Field Using FMI Data in the South of Tahe Oilfield[J]. Geoscience, 2009, 23(5):852-859. [10] 秦军. 利用成像测井技术识别钻井诱导缝[J]. 内蒙古石油化工,2006,32(10):116-117. Qin Jun. Using Imaging Logging to Recognize Drilling Induced Fractures[J]. Inner Mongolia Petrochemical Industry, 2006, 32(10):116-117. [11] 谢冰,文龙,李梅. 川东北部飞仙关组裂缝发育状况分析[J]. 天然气勘探与开发,2007,30(1):38-44. Xie Bing, Wen Long, Li Mei. Analysis of Fracture Development in Feixianguan Formation, North of East Sichuan[J]. Natural Gas Exploration and Development, 2007, 30(1):38-44. [12] 宋鹏,王府断陷火石岭组火山岩储层裂缝特征与分布规律[J]. 世界地质,2015,23(3):716-725. Song Peng. Fracture Characteristics and Distribution of Volcanic Reservoir of Huoshiling Formation in Wangfu Fault Depression[J]. Global Geology, 2015, 23(3):716-725. [13] 王振宇,刘超,张云峰,等. 库车坳陷K区块冲断带深层白垩系致密砂岩裂缝发育规律、控制因素与属性建模研究[J]. 岩石学报,2016, 32(3):865-876. Wang Zhenyu, Liu Chao, Zhang Yunfeng, et al. A Study of Fracture Development,Controlling Factor and Property Modeling of Deep-Lying Tight Sandstone in Cretaceous Thrust Belt K Region of Kuqa Depression[J]. Acta Petrologica Sinica, 2016, 32(3):865-876. [14] 王玉华. 电成像测井在大庆火成岩储层解释中的应用[J]. 大庆石油地质与开发, 2008, 27(6):128-130. Wang Yuhua. Application of Electrical Imaging Logging in the Well Logging Interpretation of Igneous Rock Reservoir in Daqing[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(6):128-130. [15] 廖东良,肖立志,张元春. 基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J]. 石油钻探技术, 2014, 42(4):37-41. Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4):37-41. [16] 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M].合肥:中国科技大学出版社, 2009. Chen Yong, Huang Tingfang, Liu Enru. Petrophysics[M]. Hefei:University of Science and Technology of China Press,2009. [17] Evans B, Fredrich J, Wong T F. The Brittle-Ductile Transition in Rocks:Recent Experiment and Theoretical Progress[J]. America Goephys Union, 1990, 56:1-20. [18] Rickman R, Mullen M, Petre E, et al. A Practical Use of Shale Petrophysics for Stimulation Design Optimization:All Shale Plays are not Clones of the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition. Denver:SPE, 2008:21-24. [19] Jarvie D M, Hill R J, Ruble H J, et al. Uncon-ventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. [20] Dan B, Simon H, Jennifer M, et al. Preophysical Evaluation for Enhancing Hydraulic Stimulation in Horizontal Shale Gas Wells[C]//SPE Annual Technical Conference and Exhibition. Florence:SPE, 2010:19-22. [21] 王冠民,熊周海,张婕. 岩性差异对泥页岩可压裂性的影响分析[J].吉林大学学报(地球科学版),2016,46(4):1080-1089. Wang Guanmin, Xiong Zhouhai, Zhang Jie. The Impact of Lithology Differences to Shale Fracturing[J]. Journal of Jilin University (Earth Science Edition),2016,46(4):1080-1089. [22] 王晓杰,彭仕宓,吕本勋,等. 用正交偶极阵列声波测井研究地层地应力场[J]. 中国石油大学学报(自然科学版),2008, 32(4):42-46. Wang Xiaojie, Peng Shimi, Lü Benxun, et al. Researching Earth Stress Field Using Cross-Dipole Acoustic Logging Technology[J]. Journal of China University of Petroleum, 2008, 32(4):42-46. |
[1] | 张波, 曹洪恺, 孙建孟, 张鹏云, 闫伟超. 稠油热采地层阵列感应测井响应特性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1277-1286. |
[2] | 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306. |
[3] | 李振苓, 沈金松, 李曦宁, 王磊, 淡伟宁, 郭森, 朱忠民, 于仁江. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1295-1307. |
[4] | 肖凡, 陈建国. 基于RCGA的PPC模型在化探异常识别与提取中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1319-1330. |
[5] | 张恒荣, 何胜林, 吴进波, 吴一雄, 梁玉楠. 一种基于Kozeny-Carmen方程改进的渗透率预测新方法[J]. 吉林大学学报(地球科学版), 2017, 47(3): 899-906. |
[6] | 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278. |
[7] | 高建申, 孙建孟, 姜艳娇, 崔利凯. 侧向测井电极系结构影响分析及阵列化测量新方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1874-1883. |
[8] | 潘保芝, 蒋必辞, 刘文斌, 房春慧, 张瑞. 致密砂岩储层含气测井特征及定量评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 930-937. |
[9] | 张新培, 于雪峰. 利用地球物理信息描述太古宇潜山有效储集体[J]. 吉林大学学报(地球科学版), 2016, 46(1): 270-278. |
[10] | 赵军, 代新雲, 古莉, 祁新忠, 陈伟中. 基于粒度控制的复杂储层渗透性建模方法[J]. 吉林大学学报(地球科学版), 2016, 46(1): 279-285. |
[11] | 郑香伟, 吴健, 何胜林, 胡向阳, 梁玉楠. 基于流动单元的砂砾岩储层渗透率测井精细评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 286-294. |
[12] | 金博, 黄先雄, 常广发,张胜斌,付海波,李铁柱. 滨里海盆地Д南石炭系碳酸盐岩储层类型及分布特征[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2042-2050. |
[13] | 张中庆, 庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1720-1726. |
[14] | 宋延杰,姜艳娇,宋杨,张依妮. 古龙南地区低阻油层胶结指数和饱和度指数影响因素实验[J]. 吉林大学学报(地球科学版), 2014, 44(2): 704-714. |
[15] | 杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2035-2043. |
|