吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1603-#VALUE.doi: 10.13278/j.cnki.jjuese.20180176

• 中国水利学会勘测专业委员会专栏 • 上一篇    

大石峡高面板坝筑坝砂砾料现场大型相对密度试验

董承山1, 杨正权2, 王龙2, 何冰2, 刘莹光3   

  1. 1. 中水北方勘测设计研究有限责任公司, 天津 300222;
    2. 中国水利水电科学研究院, 北京 100048;
    3. 北京电力经济技术研究院, 北京 100055
  • 收稿日期:2018-05-24 发布日期:2018-11-20
  • 作者简介:董承山(1980-),男,高级工程师,主要从事地质工程与岩土工程研究,E-mail:spikedong@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFC0404902);国家自然科学基金项目(51509272,51679264);水利部公益性行业科研专项项目(201501035);中国水科院基本科研业务费项目(GE0145B292017)

Field Large-Scale Relative Density Tests of Gravel Soil of Dashixia High Concrete Faced Rock-Fill Dam

Dong Chengshan1, Yang Zhengquan2, Wang Long2, He Bing2, Liu Yingguang3   

  1. 1. China Water Resources Beifang Investigation, Design and Research Co. Ltd, Tianjin 300222, China;
    2. China Institute of Water Resources and Hydropower Research, Beijing 100048, China;
    3. Beijing Electric Power Economic Technology Institute, Beijing 100055, China
  • Received:2018-05-24 Published:2018-11-20
  • Supported by:
    Supported by National Key Research and Development Program of China (2017YFC0404902), National Natural Science Foundation of China (51509272, 51679264), Public Service Sector R&D Project of Ministry of Water Resource of China (201501035) and Special Scientific Research Foundation of China Institute of Water Resources and Hydropower Research (GE0145B292017)

摘要: 当前,主要采用相对密度来表征筑坝砂砾料的密实程度,并以此来评价大坝的施工碾压质量。受试验设备尺寸和击实功能的限制,室内试验难以反映现场实际筑坝砂砾料粒径大、采用大型碾压机具进行高强度碾压的实际情况,试验确定砂砾料最大干密度值偏低,难以直接用于指导实际工程。针对大石峡高面板坝筑坝砂砾料,在工地现场采用实际筑坝碾压设备和大型相对密度桶,对原级配坝料开展相对密度试验,研究了坝料的压实特性,确定了不同级配(含砾量)坝料的相对密度特性指标。研究表明:比较室内试验成果,现场试验确定砂砾料最大干密度值有较大提高;随着含砾量的增加,砂砾料的最大、最小干密度值先增加、后减小,存在压实密度最高的最优含砾量特征值;强振碾压使得弱胶结砂砾料产生不同程度的颗粒破碎效应,颗粒破碎的程度和土料的原始级配特性相关联。

关键词: 筑坝砂砾料, 现场相对密度试验, 最大干密度, 三因素图, 颗粒破碎, 大石峡高面板坝

Abstract: The compaction rate of gravel soil is usually characterized by the "relative density", which is used to evaluate the compaction quality of dam construction. Restricted by the size and energy limitation of the laboratory test equipment, the laboratory tests are difficult to reflect the actual situation of high strength compaction of gravel soil by large rolling equipment;and the maximum dry density of the gravel soils obtained in laboratory tests is often much lower than the actual one, so it cannot be directly used in practical engineering. To the sand and gravel materials for the Dashixia high concrete faced rock-fill dam, the field large-scale relative density test of original gravel soil was carried out by using the actual rolling equipment and large relative density bucket on the site, the compaction characteristics of soil was studied, and further the relative density characteristic indexes of soils with different gradation (coarse grain content) were determined. The test results show that the maximum dry density of gravel soil determined by field test is greatly improved compared to a general laboratory test; the minimum and maximum dry densities of gravel soil show a tendency of increasing at first and then decreasing with the increase of the coarse grain content, and there is an optimal coarse grain content value with the highest compaction density of soil; the strong vibration compaction results in different degrees of particle crushing effect on weakly cemented gravel materials, and the degree of particle crushing is related to the original grading characteristics of soil materials.

Key words: gravel soil of dam, field relative density test, maximum dry density, three factors chart, particle crushing, Dashixia high concrete faced rock-fill dam

中图分类号: 

  • P642.2
[1] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州:黄河水利出版社, 1998. Guo Qingguo. Research and Application of the Engineering Properties of Coarse-Grained Soil[M]. Zhengzhou:Yellow River Water Conservancy Press, 1984.
[2] 孙明,朱俊高,沈靠山,等. 密实度对砂卵砾石料强度及变形特性的影响[J]. 水利水运工程学报, 2015(4):43-47. Sun Ming, Zhu Jungao. Shen Kaoshan, et al. Density Effects on Strength and Deformation Behaviour of Sandy Gravel[J]. Hydro-Science and Engineering, 2015(4):43-47.
[3] 潘政,朱俊高,方智荣. 相对密实度对砂卵砾石料强度影响的试验研究[J]. 人民黄河, 2016, 38(2):130-133. Pan Zheng, Zhu Jungao, Fang Zhirong. Study on Relative Density Effects on Strength Behaviour of Sand-Gravel Material by Triaxial Test[J]. Yellow River, 2016, 38(2):130-133.
[4] 郭庆国,李鹏,徐彦文. 土石坝的压实标准及应用中存在的问题[J]. 西北水电, 2001(3):33-37. Guo Qingguo, Li Peng, Xu Yanwen. Compacting Standard for Embankment Dams and Problems in Applications[J]. Northwest Hydropower, 2001(3):33-37.
[5] 朱俊高,翁厚洋,吴晓铭,等. 粗粒料级配缩尺后压实密度试验研究[J]. 岩土力学, 2010, 31(8):2394-2398. Zhu Jungao, Weng Houyang, Wu Xiaoming, et al. Experimental Study of Compact Density of Scaled Coarse-Grained Soil[J]. Rock and Soil Mechanics, 2010, 31(8):2394-2398.
[6] 翁厚洋,朱俊高,余挺,等. 粗粒料缩尺效应研究现状与趋势[J]. 河海大学学报(自然科学版), 2009, 37(4):425-429. Weng Houyang, Zhu Jungao, Yu Ting, et al. Status Quo and Tendency of Studies on Scale Effects of Coarse-Grained Materials[J]. Journal of Hohai University(Natural Sciences), 2009, 37(4):425-429.
[7] 凌华,殷宗泽,朱俊高,等. 堆石料强度的缩尺效应试验研究[J]. 河海大学学报(自然科学版), 2011, 39(5):540-544. Ling Hua, Yin Zongze, Zhu Jungao, et al. Experimental Study of Scale Effect on Strength of Rockfill Materials[J]. Journal of Hohai University(Natural Sciences), 2011,39(5):540-544.
[8] 郭万里,朱俊高,温彦锋. 对粗粒料4种级配缩尺方法的统一解释[J]. 岩土工程学报, 2016, 38(8):1473-1480. Guo Wanli, Zhu Jungao, Wen Yanfeng. Unified Description for Four Grading Scale Methods for Coarse Aggregate[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8):1473-1480.
[9] 陈志波, 朱俊高, 王强. 宽级配砾质土压实特性试验研究[J]. 岩土工程学报, 2008, 30(3):446-449. Chen Zhibo, Zhu Jungao, Wang Qiang. Compaction Property of Wide Grading Gravelly Soil[J]. Journal of Geotechnical Engineering, 2008, 30(3):446-449.
[10] 朱俊高,轩向阳,薄以霆. 表面振动压实仪法测定粗粒土密度的影响因素[J]. 水利水运工程学报, 2013(2):15-19. Zhu Jungao, Xuan Xiangyang, Bo Yiting. Influence Factors of Dry Density of Coarse-Grained Soil Measured by Surface Vibrating Compactor[J]. Hydro-Science and Engineering, 2013(2):15-19.
[11] 田树玉. 用渐近线辅助拟合法确定大粒径砂卵石最大干容重[J]. 岩土工程学报, 1992, 14(1):35-43. Tian Shuyu. Determining the Max Dry Density of Coarse Grained Sandy Gravels by the Method of Curve-Fitting with Asymptotic Line[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1):35-43.
[1] 赵金童, 牛瑞卿, 姚琦, 武雪玲. 雷达数据辅助下的滑坡易发性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1182-1191.
[2] 王洁, 宫辉力, 陈蓓蓓, 高明亮, 周超凡, 梁悦, 陈文锋. 基于Morlet小波技术的北京平原地面沉降周期性分析[J]. 吉林大学学报(地球科学版), 2018, 48(3): 836-845.
[3] 谭福林, 胡新丽, 张玉明, 何春灿, 章涵. 考虑渐进破坏过程的滑坡推力计算方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 193-202.
[4] 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212.
[5] 李鹏, 苏生瑞, 马驰, 黄璜, 徐继维. 堆积层-基岩接触面滑坡的形成机理——以祖师庙滑坡为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1471-1479.
[6] 周超凡, 宫辉力, 陈蓓蓓, 贾煦, 朱锋, 郭琳. 利用数据场模型评价北京地面沉降交通载荷程度[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1511-1520.
[7] 洪勇, 车效文, 郑孝玉, 刘鹏, 周蓉. 陕西泾阳南塬滑坡干湿黄土快速大剪切力学特性[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1207-1218.
[8] 安玉科, 吴玮江, 张文, 姚青青, 宋建, 张宏宏. 抗滑桩裂纹控制荷载结构设计法及工程应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 171-178.
[9] 张延军, 张通, 殷仁朝, 郑杰, 刘彤, 谢洋洋. 基于2 m测温法的地热异常区探测及地温预测[J]. 吉林大学学报(地球科学版), 2017, 47(1): 189-196.
[10] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[11] 刘晓波, 刘少峰, 林成发. 冀西北赤城-宣化盆地土城子组沉积特征及盆缘构造分析[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1297-1311.
[12] 杜芳鹏, 王建强, 牛军强, 谭富荣, 杨创, 闫明明. 羌塘地块东南部上三叠统巴贡组软沉积变形特征及其意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 661-670.
[13] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[14] 彭令, 徐素宁, 彭军还. 多源遥感数据支持下区域滑坡灾害风险评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 175-186.
[15] 熊晓亮,孙红月,张世华,蔡岳良. 高扬程虹吸保障条件分析与合理管径选择数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1595-1601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!