吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 815-824.doi: 10.13278/j.cnki.jjuese.20190319

• 地质工程与环境工程 • 上一篇    下一篇

油页岩原位开采区注浆封闭浆液优化及其防渗效果实验

陈晨1,2, 张颖1,2, 朱江3, 朱颖1,2, 翟梁皓1,2, 沈国军1,2, 潘栋彬1,2   

  1. 1. 吉林大学建设工程学院, 长春 130026;
    2. 自然资源部复杂条件钻采技术重点实验室, 长春 130026;
    3. 中交第一航务工程勘察设计院有限公司, 天津 300222
  • 收稿日期:2019-12-28 出版日期:2021-05-26 发布日期:2021-06-07
  • 通讯作者: 张颖(1993—),男,硕士研究生,主要从事地质工程(油页岩开发技术方面)的研究,E-mail:1070190395@qq.com E-mail:1070190395@qq.com
  • 作者简介:陈晨(1965—),男,教授,博士生导师,主要从事非常规能源开发技术、极地施工技术、岩土工程施工技术的方面的研究,E-mail:chenchen@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41672361,41876218);吉林省科技厅项目(SXGJSF2017-5)

Experiment on the Optimization of Grouting Sealing Slurry and Its Anti-Seepage Effect in Oil Shale In-Situ Production Area

Chen Chen1,2, Zhang Ying1,2, Zhu Jiang3, Zhu Ying1,2, Zhai Lianghao1,2, Shen Guojun1,2, Pan Dongbin1,2   

  1. 1. College of Construction Engineering, Jilin University, Changchun 130026, China;
    2. Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China;
    3. CCCC First Harbor Consultants Co., Ltd, Tianjin 300222, China
  • Received:2019-12-28 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the National Natural Science Foundation of China (41672361,41876218) and the Project of Department of Science and Technology of Jilin Province (SXGJSF2017-5)

摘要: 为提高油页岩原位转化加热效率、减少油气污染,采用注浆技术对油页岩开采区进行封闭止水。基于扶余油页岩开采区地质条件,对优化封闭浆液配方与封闭效果进行实验研究。首先基于正交试验,获得了不同指标下的优化配方,进而通过综合分析法,选出符合此封闭区要求的优化配方;为了验证优化浆液的封闭效果,对比分析了浆液充填前后油页岩试样渗透率的变化。结果表明:浆液优化配方为水灰质量比0.85,w(钠基膨润土)4.0%、w(微硅粉)6.0%、w(聚羧酸减水剂)0.5%;当围压为扶余油页岩开采区地应力时,充填浆液试样的渗透率均约为0.1×10-3 μm2,远低于未充填的试样,优化浆液封堵试样裂缝效果较好。

关键词: 油页岩, 注浆, 正交试验, 配方优化, 封闭止水

Abstract: To improve the transformation efficiency of oil shale in-situ exploration and reduce the pollution of pyrolysis products, a method of sealing production areas,namely grouting technology, is introduced. Taking the geological conditions of Fuyu oil shale as an example, the optimum formulation of grout and its sealing effect in oil shale production area are determined. Based on the orthogonal test, the viscosity of grout is set as the main evaluation index, and the optimized formula of grout is water cement ratio of 0.85, sodium bentonite of 4.0%, silica powder of 6.0%, and poly-carboxylic acid super-plasticizer of 0.5%. In order to verify the sealing effect of the optimized grout, the permeability changes of the oil shale samples filled or not filled with the grout were compared and analyzed. When the confining pressure is equal to the in-situ stress of Fuyu oil shale, the permeability of all filling grouts samples is all about 0.1×10-3 μm2, which is much lower than that of the samples without the grout, indicating that the optimized grout can seal the fractures successfully.

Key words: oil shale, grouting, orthogonal test, formulation optimization, anti-seepage treatment

中图分类号: 

  • TQ172.44
[1] 侯吉礼,马跃,李术元,等.世界油页岩资源的开发利用现状[J].化工进展,2015,34(5):1183-1190. Hou Jili,Ma Yue,Li Shuyuan,et al. Development and Utilization of Oil Shale Worldwide[J]. Chemical Industry and Engineering Progress,2015,34(5):1183-1190.
[2] Han X, Kulaots I, Jiang X, et al. Review of Oil Shale Semicoke and Its Combustion Utilization[J]. Fuel, 2014, 126:143-161.
[3] Zhao G J, Chen C, Qian F. Application Prospects in China of Oil Shale In-Situ Mining Method and an Improved Method[J]. Applied Mechanics and Materials,2014, 535: 602-605.
[4] 朱江.吉林扶余油页岩原位裂解区劈裂注浆封闭及其裂缝扩展研究[D].长春:吉林大学,2019. Zhu Jiang. Study on Splitting Grouting Seaing and Fracture Propagation in Oil Shale In-Situ Pyrolysis Zone in Fuyu of Jilin Province[D]. Changchun:Jilin University,2019.
[5] Geng Y, Liang W, Liu J, et al. Evolution of Pore and Fracture Structure of Oil Shale Under High Temperature and High Pressure[J]. Energy & Fuels, 2017, 31(10): 10404-10413.
[6] Chen C, Gao S, Sun Y, et al. Research on Underground Dynamic Fluid Pressure Balance in the Process of Oil Shale In-Situ Fracturing-Nitrogen Injection Exploitation[J]. Journal of Energy Resources Technology, 2017, 139(3): 32908.
[7] 杨阳. 高压—工频电加热原位裂解油页岩理论与试验研究[D].长春:吉林大学,2014. Yang Yang. Theoretical and Experiment Research of Oil Shale In-Situ Pyrolysis by High Voltage-Power Frequency Electrical Heating Method[D]. Changchun:Jilin University,2014.
[8] 张金宝. 油页岩原位开采地下冷冻墙联合制冷系统的实验研究[D].长春:吉林大学,2014. Zhang Jinbao. Research on Experiment of Combined Refrigeration System of Underground Frozen Wall in Situ Mining of Oil Shale[D]. Changchun:Jilin University,2014.
[9] 吕世东,油页岩原位裂解止水注浆实验及数值模拟研究[D].长春:吉林大学,2017. Lü Shidong. Experimental Study and Numerical Simulation of Sealing Grouting for Oil Shale In-Situ Pyrolysis[D]. Changchun:Jilin University,2017.
[10] 张顶立,孙振宇,陈铁林.海底隧道复合注浆技术及其工程应用[J].岩石力学与工程学报,2019,38(6):1102-1116. Zhang Dingli,Sun Zhenyu,Chen Tielin. Composite Grouting Technology for Subsea Tunnels and Its Engineering Application[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(6):1102-1116.
[11] 李召峰.富水破碎岩体注浆材料研发与注浆加固机理研究及应用[D].济南:山东大学,2016. Li Zhaofeng. Development and Application of Grouting Material and the Reinforcement Mechanism for Rich-Water Broken Rock Mass[D]. Jinan:Shandong University,2016.
[12] Chuaqui M, Bruce D A. Mix Design and Quality Control Procedures for High Mobility Cement Based Grouts[J]. Geotechnical Special Publication, 2011,120:1153-1168.
[13] 孙钊.大坝基岩灌浆[M].北京:中国水利水电出版社,2004. Sun Zhao. Dam Bedrock Grouting[M]. Beijing:China Water Conservancy and Hydropower Press,2004.
[14] Xue Q, Li J, Liu L. Experimental Study on Anti-Seepage Grout Made of Leachate Contaminated Clay in Landfill[J]. Applied Clay Science,2013, 81(4):438-442.
[15] 单仁亮, 杨昊, 张雷,等. 水泥稳定浆液配比及适用条件研究[J]. 煤炭工程, 2014, 46(12):97-100. Shan Renliang,Yang Hao,Zhang Lei,et al. Research on Proportion and Applicable Conditions of Cement Stable Slurry[J]. Coal Engineering, 2014, 46(12):97-100.
[16] Chen C, Pan D, Yang L, et al. Investigation into the Water Jet Erosion Efficiency of Hydrate-Bearing Sediments Based on the Arbitrary Lagrangian-Eulerian Method[J]. Applied Sciences, 2019, 9(1): 182.
[17] Breitsprecher G, Tóth P S. Underpinning of a Pier by Microfine Cement Grouting and Compensation Grouting[C]//International Conference on Grouting and Ground Treatment. New Orleans:American Society of Civil Engineers,2003:740-751.
[18] 季桂娟,杨春明,甘树才,等.利用油页岩灰渣制备通用硅酸盐水泥[J].吉林大学学报(地球科学版),2012,42(4):1173-1178. Ji Guijuan,Yang Chunming,Gan Shucai,et al. Prouduction of Portland Cement with Oil Shale Ash[J]. Journal of Jilin University (Earth Science Edition),2012,42(4):1173-1178.
[19] 陈晨,沈国军,张颖,等.汪清、农安和桦甸油页岩物理力学性质及裂缝起裂压力对比分析研究[J].探矿工程(岩土钻掘工程),2019,46(3):1-6. Chen Chen,Shen Guojun,Zhang Ying,et al.Comparative Analysis of Physical and Mechanical Properties and Fracture Initiation Pressure of Oil Shale in Wangqing,Nong’an and Huadian[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2019,46(3):1-6.
[20] 沈国军,陈晨,高帅,等.汪清油页岩物理力学性质及裂缝起裂压力的研究[J].探矿工程(岩土钻掘工程),2018,45(9):1-4. Shen Guojun,Chen Chen,Gao Shuai,et al. Research on Wangqing Oil Shale Physical and Mechanical Properties and Hydraulic Fracturing Pressure[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2018,45(9):1-4.
[21] 李成博,宁传奇, 钟长林,等.中国油页岩矿勘查控制程度探讨[J].吉林大学学报(地球科学版),2021,51(1):13-21. Li Chengbo,Ning Chuanqi,Zhong Changlin,et al. Discussion on Extent of Exploration Control of Oil Shale Deposits in China[J]. Journal of Jilin University (Earth Science Edition),2021,51(1):13-21.
[1] 李成博, 宁传奇, 钟长林, 任建超, 徐人吁, 殷淑芹. 中国油页岩矿勘查控制程度探讨[J]. 吉林大学学报(地球科学版), 2021, 51(1): 13-21.
[2] 海连富, 王磊, 马治军, 徐清海, 宋扬, 白金鹤. 宁夏固原炭山地区中侏罗统延安组油页岩特征及其沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(3): 747-756.
[3] 刘招君, 柳蓉, 孙平昌, 孟庆涛, 胡菲. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325.
[4] 王嗣敏, 臧东升, 王熙琼, 李杰, 韩嵩, 李建中. 辽西建昌盆地油页岩发育特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 326-340.
[5] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[6] 贾建亮, 刘招君, 孟庆涛, 孙平昌, 徐进军, 柳蓉, 白悦悦. 中国陆相油页岩含油率与总有机碳的响应机理[J]. 吉林大学学报(地球科学版), 2020, 50(2): 368-377.
[7] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
[8] 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50(2): 392-404.
[9] 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284.
[10] 马中良, 王强, 郑伦举, 张彩明. 油页岩原位开采温度-时间-转化率判识方法及应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 394-399.
[11] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049.
[12] 马中良, 郑伦举, 赵中熙. 不同边界条件对油页岩原位转化开采的影响及启示[J]. 吉林大学学报(地球科学版), 2017, 47(2): 431-441.
[13] 潘建立. 顶管施工引起土体变形的计算方法及应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1458-1465.
[14] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[15] 杜佰伟, 谢尚克, 董宇, 彭清华, 郑博. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 671-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高松, 宋莹, 王琳,蒋步新. 水体中秋兰姆特效降解菌的筛选及其降解性能研究[J]. J4, 2006, 36(03): 455 -457 .
[2] 李宪洲,刘 研,刘丽华,宁维坤,范 海. 高岭土/肼插层材料的制备与表征[J]. J4, 2006, 36(04): 659 -662 .
[3] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .
[4] 丁志宏,冯平,毛慧慧. 考虑径流年内分布影响的丰枯划分方法及其应用[J]. J4, 2009, 39(2): 276 -0280 .
[5] 李建平,李桐林,张 辉,徐凯军. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. J4, 2005, 35(06): 790 -0795 .
[6] 钟宇红,房春生,邱立民,吕莉莎,张子宜,董德明,于连贵,刘 辉,刘春阳,苏红石,赵 静. 扫描电镜分析在大气颗粒物源解析中的应用[J]. J4, 2008, 38(3): 473 -0478 .
[7] 刘俊来, 唐渊, 宋志杰, Tran My Dung, 翟云峰, 吴文彬, 陈文. 滇西哀牢山构造带:结构与演化[J]. J4, 2011, 41(5): 1285 -1303 .
[8] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[9] 张原庆, 宋炳忠, 王玉福, 张宁. 鲁西铜石岩体金成矿规律和成矿预测[J]. J4, 2010, 40(6): 1287 -1294 .
[10] 安乐生, 刘贯群, 叶思源, 赵全升, 丁喜桂, 张建伟. 黄河三角洲滨海湿地健康条件评价[J]. J4, 2011, 41(4): 1157 -1165 .