吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (4): 1280-1290.doi: 10.13278/j.cnki.jjuese.20230132

• 地质工程与环境工程 • 上一篇    下一篇

基于正交-响应面法的砂土细观参数标定

刘红帅1,2,张东涛1,2   

  1. 1.河北大学建筑工程学院,河北 保定 071000
    2.河北大学岩土工程研究所,河北 保定 071000
  • 收稿日期:2023-05-18 出版日期:2024-07-26 发布日期:2024-07-26
  • 作者简介:刘红帅(1975-),男,研究员,博士,主要从事岩土地震工程方面的研究,E-mail:13810892160@163.com
  • 基金资助:
    河北省自然科学基金项目(E2020201017);中国地震局工程力学研究所基本科研业务费专项项目(2019EEEVL0202);河北省高等学校科学技术研究项目(ZD2020157)

Calibration of Sand Mesoscopic Parameters Based on Orthogonal-Response Surface Method#br#

Liu Hongshuai 1, 2, Zhang Dongtao 1, 2   

  1. 1. College of Civil Engineering and Architecture, Hebei University,Baoding 071000,Hebei,China
    2. Institute of Geotechnical Engineering, Hebei University,Baoding 071000,Hebei,China
  • Received:2023-05-18 Online:2024-07-26 Published:2024-07-26
  • Supported by:
    the Natural Science Foundation of Hebei Province (E2020201017),the Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration (2019EEEVL0202) and the Science and Technology Research Project of Higher Education Institutions in Hebei Province (ZD2020157)

摘要: 颗粒离散元的模拟精度主要取决于所标定细观参数的准确性,为提升细观参数的标定精度和效率,本文首先采用抗转动线性接触模型模拟砂土三轴压缩试验;再利用正交试验中的方差分析法筛选出宏观参数的控制性细观参数;然后建立宏观参数与控制性细观参数的响应面方程,依据室内三轴试验确定的砂土宏观参数,代入所建的响应面方程求解得到控制性细观参数;最后结合三轴试验结果验证所标定细观参数的准确性。结果表明:宏观参数包括弹性模量、泊松比、峰值摩擦角和剪胀角,其中弹性模量的控制性细观参数为有效模量和摩擦系数,泊松比的控制性细观参数为刚度比与摩擦系数,峰值摩擦角和剪胀角的控制性细观参数都为摩擦系数;通过三轴试验得出宏观参数取值,弹性模量为83.83 MPa、泊松比为0.45、峰值摩擦角为34.47°、剪胀角为8.93°;进一步标定细观参数取值,有效模量为153.35 MPa,刚度比为2.16,摩擦系数为0.45;利用标定的细观参数进行三轴试验模拟,结果与室内试验结果在低围压(100 kPa)下峰值强度相差7.2%,在高围压(300、500 kPa)下误差都控制在了±15.0%以内,证明了所提出的标定方法具有准确性和可靠性。

关键词: 砂土, 离散元法, 细观参数, 正交试验, 响应面法, 宏观参数, 弹性模量, 泊松比

Abstract: The simulation accuracy of the particle discrete element method (DEM) mainly depends on the accuracy of calibrated mesoscopic parameters. To improve the calibration accuracy and efficiency of mesoscopic parameters, firstly,the rolling-resistance linear contact model was used to simulate sand triaxial compression tests. Then, the variance analysis method in orthogonal experiments is used to select the controlling mesoscopic parameters (CMP), and response surface equations are established to relate the macro parameters to the CMP. By substituting the macro parameters determined from triaxial tests into the response surface equations, the values of the CMP are solved. Finally, the accuracy of the calibrated micro parameters is verified by comparing the simulation results with the triaxial test results. The results show that the macro parameters include elastic modulus, Poisson’s ratio, dilatancy angle, and peak friction angle. The CMP for the elastic modulus are effective modulus and friction coefficient, while the controlling micro parameters for Poisson’s ratio are stiffness ratio and friction coefficient. The CMP of the peak friction angle and dilatancy angle are the friction coefficient. The elastic modulus, Poisson’s ratio, peak friction angle and dilatancy angle from the triaxial tests, are 83.83 MPa, 0.45, 34.47° and 8.93°, respectively. The corresponding mesoscopic parameters are determined as follows: Effective modulus of 153.35 MPa, stiffness ratio of 2.16, and friction coefficient of 0.45. Comparing simulation results from the calibrated mesoscopic parameters with the triaxial tests, the difference in peak strength is 7.2% at a low level of confining pressure (100 kPa), and the errors are within 15.0% at higher level of confining pressures (300 and 500 kPa).

Key words: sand,  , discrete element method, mesoscopic parameter, orthogonal test, response surface method, marco parameter, elastic modulus, Poisson’s ratio

中图分类号: 

  • TU4
[1] 刘红帅, 宋东松, 张东涛, 李延冰. 干砂小应变动力学参数的弯曲元试验[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1826-1834.
[2] 张延军, 袁学兵, 马跃强, 高雪峰, 高阳. 花岗岩双裂隙热-流耦合参数敏感性[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1971-1981.
[3] 李洪丽, 刘财, 田有, 范豪. 中国东北地壳结构的地震层析成像[J]. 吉林大学学报(地球科学版), 2022, 52(1): 270-.
[4] 苏亮, 时伟, 水伟厚, 曹建萌. 高能级强夯法处理深厚吹填砂土地基现场试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1560-1569.
[5] 宋东松, 冯震, 金红山, 孙逸涵. 确定砂土动剪切模量和阻尼比的方法对比[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1366-1380.
[6] 陈晨, 张颖, 朱江, 朱颖, 翟梁皓, 沈国军, 潘栋彬. 油页岩原位开采区注浆封闭浆液优化及其防渗效果实验[J]. 吉林大学学报(地球科学版), 2021, 51(3): 815-824.
[7] 洪勇, 李子睿, 唐少帅, 王陆阳, 李亮. 平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1814-1822.
[8] 张虎, 张建明, 苏凯, 刘世伟. 冻土旁压试验与单轴试验对比[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1479-1484.
[9] 年廷凯,余鹏程,柳楚楠,陆淼嘉,刁美慧. 吹填粉砂土固结蠕变试验及模型[J]. 吉林大学学报(地球科学版), 2014, 44(3): 918-924.
[10] 季桂娟, 杨春明, 甘树才, 吴晓敏, 王忠革. 利用油页岩灰渣制备通用硅酸盐水泥[J]. J4, 2012, 42(4): 1173-1178.
[11] 邓继新, 韩德华. 应力松弛作用对未固结砂岩等效弹性性质的影响[J]. J4, 2011, 41(1): 283-291.
[12] 程祖锋,孙秀娟,崔吉馨. 混凝土腐蚀的正交试验研究[J]. J4, 2007, 37(5): 978-0982.
[13] 王 健,李 鱼,董国华,汤 洁. 交互正交试验设计在Mn/Ce催化剂制备中的应用[J]. J4, 2007, 37(3): 606-0610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 滕吉文,田有,刘财,韩立国. 中国双相沉积盆地、古老结晶基底与东北地区深层潜在油气藏[J]. J4, 2008, 38(4): 527 -0552 .
[2] 刘洪林,李海山. ICA及其在气液两相流辨识中的应用[J]. J4, 2009, 39(1): 31 -0036 .
[3] 李发文, 冯平, 张超. 天津北三河地区垂向耦合产流模型及应用[J]. J4, 2011, 41(2): 459 -464 .
[4] 宋晶, 王清, 夏玉斌, 陈允进, 陈慧娥, 苑晓青. 真空预压处理高黏粒吹填土的物理化学指标[J]. J4, 2011, 41(5): 1476 -1480 .
[5] 李碧乐,沈鑫,陈广俊,杨延乾,李永胜. 青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1676 -1687 .
[6] 宋明春,李三忠,伊丕厚,崔书学,徐军祥,吕古贤,宋英昕,姜洪利,周明岭,张丕建,黄太岭,刘长春,刘殿浩. 中国胶东焦家式金矿类型及其成矿理论[J]. 吉林大学学报(地球科学版), 2014, 44(1): 87 -104 .
[7] 韩忠,邵景力,崔亚莉,程汤培,李玲,杨程. 基于MODFLOW的地下水流模型前处理优化[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1290 -1296 .
[8] 雷如雄,吴昌志,屈迅,顾连兴,陈刚,吾尔娜,孙洪涛,刘国宁. 中天山天湖东铁钼矿含矿片麻状花岗岩年代学、地球化学和锆石Hf同位素-对于中天山早古生代构造演化的启示[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1540 -1552 .
[9] 郝立波, 赵昕, 赵玉岩. 辽宁白云金矿床稳定同位素地球化学特征及矿床成因[J]. 吉林大学学报(地球科学版), 2017, 47(2): 442 -451 .
[10] 张兵强, 赵富远, 杨清毫, 黄毅, 李俊海, 刘松. 贵州省盘县架底金矿床成矿地质条件及找矿方向[J]. 吉林大学学报(地球科学版), 2022, 52(1): 94 .