吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1221-1230.doi: 10.13278/j.cnki.jjuese.201604302

• 地球探测与信息技术 • 上一篇    下一篇

强电磁干扰下磁共振地下水探测噪声压制方法研究进展

林君, 张扬, 张思远, 舒旭, 杜文元, 林婷婷   

  1. 吉林大学仪器科学与电气工程学院/地球信息探测仪器教育部重点实验室, 长春 130026
  • 收稿日期:2016-03-30 出版日期:2016-07-26 发布日期:2016-07-26
  • 作者简介:林君(1954),男,教授,博士生导师,主要从事地球物理探测技术及仪器研究,E-mail:lin_jun@jlu.edu.cn
  • 基金资助:

    国家重大科学仪器设备开发专项项目(2011YQ030133);国家自然科学基金面上项目(41374075)

Progress of Magnetic Resonance Sounding for Groundwater Investigation Under High-Level Electromagnetic Interference

Lin Jun, Zhang Yang, Zhang Siyuan, Shu Xu, Du Wenyuan, Lin Tingting   

  1. College of Instrumentation and Electrical Engineering/ Lab of Geo-Exploration Instrumentation of Ministry of Education, Jilin University, Changchun 130026, China
  • Received:2016-03-30 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by the Key Project of the National Instrumentation Project (2011YQ030133) and General Progran of the Nature Science Foundation of China (41374075)

摘要:

磁共振地下水探测方法因具有高分辨力、高效率、信息量丰富和解唯一等优点而备受地球物理工作者关注。近几年,该方法在正演模型和反演解释方面取得了显著的进展,在水文地质勘查方面的应用也进一步拓展。然而,磁共振信号极其微弱、对周围环境中的电磁干扰反映敏感,成为其应用的主要瓶颈。吉林大学地下水磁共振技术课题组针对噪声的产生机理及特性,对影响信号质量最严重的两类噪声——工频谐波噪声和尖峰脉冲噪声进行研究。本文综述了强电磁干扰下磁共振地下水探测噪声压制方法的研究现状及近期研究进展,包括磁共振信号的工频谐波噪声压制方法和尖峰脉冲噪声压制方法,简要介绍了实时参考消噪技术、独立分量分析技术、基于能量运算的尖峰噪声抑制技术以及基于同步压缩小波变换和自寻优非线性阈值补偿技术抑制电磁干扰的研究示例,展望了地下水磁共振探测噪声压制技术的未来发展趋势。

关键词: 磁共振测深, 电磁干扰, 噪声压制, 研究现状, 发展趋势

Abstract:

Magnetic resonance sounding (MRS) for groundwater investigation has received much attention of geophysicists due to its higher resolution, more efficiency, more information and unique interpretation for hydrogeological investigations. It has shown continuous development towards a frequently used geophysical technique over the last decades. There has been significant improvements in forward modeling, inversion and interpretation during the last years. These improvements extended the application range of the method concerning solutions to hydrogeological tasks. But the applicability of MRS is highly limited due to bad signal-to-noise (S/N) ratio. In many cases, the expected MRS signals are only few tens of nanovolts and therefore often contaminated by significant high-level electromagnetic noise. MRS group of Jilin University has studied the noise and its characteristics, and found that Power-line harmonic noise and spike noise are the most disturbing noises. The purpose of this paper is to give an overview of noise cancelling in MRS signal processing. We report the recent researches, including noise cancelling in real time, independent component analysis, spikes removal of MRS data based on energy calculation, as well as synchronous compression wavelet transform and self-optimizing nonlinear threshold compensation. By introducing several case studies, we prospect the developing trends of MRS noise cancelling.

Key words: magnetic resonance sounding, electromagnetic interference, noise cancelling, research situation, progress

中图分类号: 

  • P631

[1] Legchenko A V, Baltassat J M, Beauce A, et al. Nuclear Magnetic Resonance as a Geophysical Tool for Hydrogeologists[J]. Journal of Applied Geophysics, 2002, 50(1/2): 21-46.

[2] Lehmann-Horn J A, Hertrich M, Greenhalgh S A, et al. Three-Dimensional Magnetic Field and NMR Sensitivity Computations Incorporating Conductivity Anomalies and Variable-Surface Topography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49: 3878-3891.

[3] Hertrich M, Green A G, Braun M, et al. High-Resolution Surface-NMR Tomography of Shallow Aquifers Based on Multi-Offset Measurements[J]. Geophysics, 2009, 74(6): 47-59.

[4] Mueller-Petke M, Yaramanci U. QT Inversion: Comprehensive Use of the Complete Surface NMR Data Set[J]. Geophysics, 2010, 75(4): 199-209.

[5] Gunther T, Muller-Petke M. Hydraulic Properties at the North Sea Island of Borkum Derived from Joint Inversion of Magnetic Resonance and Electrical Resistivity Soundings[J]. Hydrology and Earth System Sciences, 2012, 16: 3279-3291.

[6] Legchenko A V, Valla P. A Review of the Basic Principles for Proton Magnetic Resonance Sounding Measurements[J]. Journal of Applied Geophysics, 2002, 50(1/2): 3-19.

[7] Lubczynski M, Roy J. Hydrogeological Interpretation and Potential of the New Magnetic Resonance Sounding (MRS) Method[J]. Journal of Hydrology, 2003, 283(1/2/3/4): 19-40.

[8] Roy J, Lubczynski M. The Magnetic Resonance So-unding Technique and Its Use for Groundwater Investigations[J]. Hydrogeol J, 2003, 11(4): 455-465.

[9] 林君,段清明,王应吉,等.核磁共振找水仪原理与应用[M].北京:科学出版社,2010. Lin Jun, Duan Qingming, Wang Yingji, et al. Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications[M]. Beijing: Science Press, 2010.

[10] 潘玉玲,张昌达.地面核磁共振找水理论和方法[M].武汉:中国地质大学出版社,2000:40. Pan Yuling, Zhang Changda. The Theory and Methods of Water Detecting[M]. Wuhan: China University of Geosciences Press, 2000: 40.

[11] 蒋川东.核磁共振地下水探测系统数据处理软件的设计与应用[D].长春:吉林大学,2009. Jiang Chuandong. Design and Application of Data Processing Software in Magnetic Resonance Sounding System for Groundwater Detection[D]. Changchun: Jilin University, 2009.

[12] 李振宇,潘玉玲,张兵,等.利用和磁共振方法研究水文地质问题及应用实例[J].水文地质工程地质,2003,30(4):50-54. Li Zhenyu, Pan Yuling, Zhang Bing, et al. Using NMR Method Research the Hydrogeology Problems and Practical Examples[J]. Hydrogeology and Engineering Geology, 2003, 30(4): 50-54.

[13] 张小华,林君,王应吉,等.地面核磁共振(NMR)找水仪发射机的研制[J].仪器仪表学报,2006,27(7):689-692. Zhang Xiaohua, Lin Jun, Wang Yingji, et al. Development of the Transmitter in a Surface NMR Water Investigation Instrument[J]. Chinese Journal of Scientific Instrument, 2006, 27(7): 689-692.

[14] 王中兴. 地面核磁共振找水仪关键技术的研究[D]. 长春:吉林大学,2009. Wang Zhongxing. The Key Technology of Magnetic Resonance Sounding Instrument for Groundwater Investigation[D]. Changchun: Jilin University, 2009.

[15] 荣亮亮. 多匝线圈核磁共振找水技术研究[D]. 长春:吉林大学,2009. Rong Liangliang. Study on Multi-Turn Loop Magnetic Resonance Sounding (MRS) Technique for Underground Water[D]. Changchun: Jilin University, 2009.

[16] Legchenko A, Valla P. Removal of Power-Line Harmonics from Proton Magnetic Resonance Sounding Measurements[J]. Journal of Applied Geophysics, 2003, 53: 103-120.

[17] Trushkin D, Shushakov O, Legchenko A. The Potential of a Noise-Reducing Antenna for Surface NMR Groundwater Surveys in the Earth's Magnetic Field, Geophysical Prospecting[J]. 1994, 42(8): 855-862.

[18] Lange G, Meyer R, Battista M D, et al. Loop Configuration Experiments on Multiple Layered Primary Aquifers in South Africa and Germany[C]// 3rd Magnetic Resonance Sounding Workshop. Madrid: Autonomous University, 2006.

[19] Walsh D O. Multi-Channel Surface NMR Instrumentation and Software for 1D/2D Groundwater Investigations[J]. Journal of Applied Geophysics, 2008, 66(3/4), 140-150.

[20] Muller-Petke M, Yaramanci U. Improving the Signal-to-Noise Ratio of Surface-NMR Measurements by Reference Channel Based Noise Cancellation[C]// 16th European Meeting of Environmental and Engineering Geophysics. Zurich: EAGE, 2010.

[21] Radic T. Improving the Signal-to-Noise Ratio of Surface NMR Data Due to the Remote Reference Technique[C]//12th European Meeting of Environmental and Engineering Geophysics. Helsinki: EAGE, 2006.

[22] Dalgaard E, Auken E, Larsen J. Adaptive Noise Cancelling of Multichannel Magnetic Resonance Sounding Signals[J]. Geophysical Journal International, 2012, 191(1): 88-100.

[23] Muller-Petke M, Costabel S. Comparison and Optimal Parameter Setting of Reference-Based Harmonic Noise Cancellation in Time and Frequency Domain for Surface-NMR[J]. Near Surface Geophysics, 2014, 12: 199-210.

[24] 林君,蒋川东,段清明,等.复杂条件下地下水磁共振探测与灾害水源探查研究进展[J].吉林大学学报(地球科学版),2012,42(5):1560-1570. Lin Jun, Jiang Chuandong, Duan Qingming, et al. The Situation and Progress of Magnetic Resonance Sounding for Groundwater Inverstigations and Underground Applications[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1560-1570.

[25] Larsen J J, Dalgaard E, Auken E. Noise Cancelling of MRS Signals Combining Model-Based Removal of Powerline Harmonics and Multichannel Wiener Filtering[J]. Geophysical Journal International, 2014, 196: 828-836.

[26] Larsen J J. Model-Based Subtraction of Spikes from Surface-NMR Data[C]// 6th Magnetic Resonance Sounding International Workshop. Arhus: [s. n.], 2015.

[27] 曲永星. 阵列式宽带核磁共振全波采集系统的研制[D]. 长春:吉林大学,2015. Qu Yongxing. Development of Broadband Array Full Wave MRS Acquisition System[D]. Changchun: Jilin University, 2015.

[28] 田宝凤,段清明.核磁共振信号工频谐波的自适应滤除方法[J].吉林大学学报(信息科学版),2009,27(3):223-228. Tian Baofeng, Duan Qingming. Removal Method of Industrial Frequency Harmonics in Nuclear Magnetic Resonance Signal Based on Adaptive Filter[J]. Journal of Jilin University (Information Science Edition), 2009, 27(3): 223-228.

[29] 田宝凤,林君,段清明,等.基于参考线圈和变步长自适应的磁共振信号噪声压制方法[J].地球物理学报,2012,55(7):2462-2472. Tian Baofeng, Linjun, Duan Qingming, et al. Variable Step Adaptive Noise Cancellation Algorithm for Magnetic Resonance Sounding Signal with a Reference Coil[J]. Chinese Journal of Geophysics, 2012, 55(7): 2462-2472.

[30] Farhang-Boroujeny B. Adaptive Filters: Theory and Applications[M]. New York: John Wiley& Sons Inc, 1998.

[31] 郝荟萃.基于自适应参考消噪的磁共振全波信号处理方法研究[D]. 长春:吉林大学,2013. Hao Huicui. Processing Method of Full Wave Magnetic Resonance Sounding Signal Based on Adaptive Reference Cancellation[D]. Changchun: Jilin University, 2013.

[32] Widrow B, Glover J R, McCool J M, et al. Adaptive Noise Cancelling: Principles and Applications[J]. Proceedings of the IEEE, 1975, 63(12), 1692-1716.

[33] 高晋占.微弱信号检测[M].北京:清华大学出版社,2004. Gao Jinzhan. Weak Signal Detection[M]. Beijing: Tsinghua University Press, 2004.

[34] 何振亚.自适应信号处理[M].北京:科学出版社,2002. He Zhenya. Adaptive Signal Processing[M]. Beijing: Science Press, 2004.

[35] An Y W, Wang S. Study on Application of Independent Component Analysis in the CSNS/RCS[J]. Chinese Acta Physica Sinica, 2013, 37: 037006.

[36] 王文波, 张晓东, 汪祥莉. 基于独立成分分析和经验模态分解的混沌信号降噪[J]. 物理学报,2013,62(5):050201. Wang Wenbo, Zhang Xiaodong, Wang Xiangli. Chaotic Signal Denoising Method Based on Independent Component Analysis and Empirical Mode Decomposition[J]. Chinese Acta Physica Sinica, 2013, 62(5): 050201.

[37] Comon P. Independent Component Analysis, A New Concept?[J]. Signal Processing, 1994, 36(3): 287-314.

[38] Hyvarinen A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3):626-634.

[39] Hyvarinen A, Oja E. A Fast Fixed-Point Algorithm for Independent Component Analysis[J]. Neural Computation, 1997, 9(7): 1483-1492.

[40] 付卫红, 杨小牛, 刘乃安. 基于四阶累积量的稳健的通信信号盲分离算法[J]. 电子与信息学报, 2008, 30(8): 1853-1856. Fu Weihong, Yang Xiaoniu, Liu Naian. Robust Algorithm for Communication Signal Blind Separation Fourth Order Cumulant-Based[J]. Journal of Electronics and Information Technology, 2008, 30(8): 1853-1856.

[41] 史文龙. 核磁共振地下水探测全波接收系统原理样机研制[D]. 长春:吉林大学,2014. Shi Wenlong. Full-Wave Receiver of MRS Groundwater Exploration System[D]. Changchun: Jilin University, 2014.

[42] Jiang C D, Lin J, Duan Q M, et al. Statistical Stacking and Adaptive Notch Filter to Remove High-Level Electromagnetic Noise from MRS Measurements[J]. Near Surface Geophysics, 2011, 9(5), 459-468.

[43] Hoaglin D C,Mosteller F,Tukey J W. Understanding Robust and Exploratory Data Analysis[M]. Wiley Classics Library Press, 2000.

[44] Chavez-Roman H, Ponomaryov V. Super Resolution Image Generation Using Wavelet Domain Interpolation with Edge Extraction via a Sparse Representation[J]. IEEE Geoscience Remote Sensing Letters, 2014, 11(10): 1777-1781.

[45] Iqbal M, Chafoor A, Siddiqui A. Satellite Image Resolution Enhancement Using Dual-Tree Complex Wavelet Transform and Nonlocal Means[J]. IEEE Geoscience Remote Sensing Letters, 2013, 10(3): 451-455.

[46] Parrilli S, Poderico M, Angelino C, et al. A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606-616.

[47] Demirel H, Anbarjafari G. Discrete Wavelet Transform-Based Satellite Image Resolution Enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1997-2004.

[1] 朱凯光, 景春阳, 范天姣, 杨洋, 彭聪. 伪随机源时间域航空电磁响应系统辨识[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1881-1889.
[2] 方石, 赵云. 比较沉积学概念体系的厘定与重构[J]. 吉林大学学报(地球科学版), 2020, 50(2): 480-499.
[3] 任军平, 王杰, 刘晓阳, 贺福清, 何胜飞, 左立波, 许康康, 龚鹏辉, 孙凯, 刘宇. 非洲中南部铜多金属矿床研究现状及找矿潜力分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1083-1103.
[4] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[5] 刘霞, 黄阳, 黄敬, 段志伟. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1): 262-269.
[6] 林君,慧芳,孙淑琴,蒋川东,林婷婷. 基于不等式约束的磁共振信号T2谱多指数分解法及算法改进[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2018-2025.
[7] 孙建国. Kirchhoff型偏移理论的研究历史、研究现状与发展趋势展望——与光学绕射理论的类比、若干新结果、新认识以及若干有待于解决的问题[J]. J4, 2012, 42(5): 1521-1552.
[8] 林君, 蒋川东, 段清明, 王应吉, 秦胜伍, 林婷婷. 复杂条件下地下水磁共振探测与灾害水源探查研究进展[J]. J4, 2012, 42(5): 1560-1570.
[9] 王德利, 党丹, 刘伟明, 张亚红. CFP技术层间多次波预测及Curvelet域相减方法[J]. J4, 2011, 41(3): 907-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 孟宪纲,薄万举,刘志广,刘勇,畅柳,李朝柱,王子平. 芦山7.0级地震与巴颜喀拉块体中东段的活动性[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1705 -1711 .
[3] 陈欢庆, 梁淑贤, 舒治睿, 邓晓娟, 彭寿昌. 冲积扇砾岩储层构型特征及其对储层开发的控制作用——以准噶尔盆地西北缘某区克下组冲积扇储层为例[J]. 吉林大学学报(地球科学版), 2015, 45(1): 13 -24 .
[4] 王庆华,孙友宏,陈昌富,吴晓寒. BTR-4000型地层热物性原位测试仪及其应用[J]. J4, 2009, 39(2): 347 -0352 .
[5] 张春艳, 张兴洲, 邱殿明. 延边地区青龙村群斜长角闪岩中锆石U-Pb同位素年龄及地质意义[J]. J4, 2007, 37(4): 672 -0677 .
[6] 程祖锋,孙秀娟,崔吉馨. 混凝土腐蚀的正交试验研究[J]. J4, 2007, 37(5): 978 -0982 .
[7] 马荣,石建省,刘继朝. 人工内分泌网络模型在水文地质参数研究中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(3): 914 -921 .
[8] 李宁, 王成文. 东北及邻区晚古生代地层接触关系与佳-蒙地块的形成和演化[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1331 -1340 .
[9] 胡大千,初凤友,姚 杰. 中太平洋YJA海山富钴结壳矿物组成与元素地球化学[J]. J4, 2006, 36(01): 32 -0037 .
[10] 贾大成,邢立新, 潘 军, M. J. van Bergen, H. van Roermund. 伊通上地幔剪切带捕虏体中富铝尖晶石的地球化学特征[J]. J4, 2006, 36(04): 497 -502 .