吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1064-1081.doi: 10.13278/j.cnki.jjuese.20200262
杨元江1, 邓昌州2, 李成禄1, 张立1, 高永志1, 于喜洹1
Yang Yuanjiang1, Deng Changzhou2, Li Chenglu1, Zhang Li1, Gao Yongzhi1, Yu Xihuan1
摘要: 本文研究了黑龙江省大兴安岭东北部大洋山钼矿区中生代侵入岩的年代学和岩石地球化学特征,探讨了研究区中生代侵入岩的形成时代、岩石成因及构造背景。采用电感耦合-等离子体质谱仪(LA-ICP-MS)锆石U-Pb定年方法,获得细中粒二长花岗岩加权平均年龄分别为(177.3±2.6)Ma和(176.5±1.6)Ma, 为早侏罗世;闪长玢岩加权平均年龄为(158.0±2.7)Ma, 为晚侏罗世。岩石地球化学研究表明:细中粒二长花岗岩具高Si,富K和贫Fe、Mn、Mg等特征,大离子亲石元素Rb、K和LREE富集,高场强元素Nb、Zr、P、Th和HREE亏损,具有显著的Eu负异常(δEu =0.39),结合其低Cr、Ni、Co质量分数和低Mg#值(Mg#为27.25),指示壳源岩浆特征;闪长玢岩偏碱,富K和Na,Ca、Ti、Mg等元素质量分数中等,大离子亲石元素Rb、K、Sr相对富集,高场强元素Nb、Ta、Ti、Th和HREE相对亏损,具俯冲带弧岩浆岩的特征。综合研究表明,细中粒二长花岗岩和闪长玢岩的形成均受到北部蒙古—鄂霍茨克洋俯冲作用的影响,蒙古—鄂霍茨克洋残留部分在大兴安岭东北部俯冲闭合时间为晚侏罗世—早白垩世期间。
中图分类号:
[1] 周若.花岗岩混合作用[J]. 地学前缘,1994,1(1/2):87-97. Zhou Ruo. Hybridization in the Genesis of Granitoids[J]. Earth Science Frontiers, 1994, 1(1/2):87-97. [2] 肖庆辉,邱瑞照,邓晋福,等. 中国花岗岩与大陆地壳生长方式初步研究[J]. 中国地质,2005,32(3):343-352. Xiao Qinghui, Qiu Ruizhao, Deng Jinfu, et al. Granitoids and Continental Crustal Growth Modes in China[J]. Geology in China, 2005, 32(3):343-352. [3] Ying J F, Zhou X H, Zhang L C, et al. Geochronological Framework of Mesozoic Volcanic Rocks in the Great Xing'an Range, NE China, and Their Geodynamic Implications[J]. Journal of Asian Earth Sciences, 2010, 39(6):786-793. [4] Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic Volcanism in the Great Xing'an Range(NE China):Timing and Implications for the Dynamic Setting of NE Asia[J]. Earth & Planetary Science Letters, 2006, 251(1):179-198. [5] 林强,葛文春,孙德有,等. 中国东北地区中生代火山岩的大地构造意义[J]. 地质科学,1998,33(2):3-5. Lin Qiang, Ge Wenchun, Sun Deyou, et al. Tectonic Significance of Mesozoic Volcanic Rocks in Northeastern China[J]. Chinese Journal of Geology, 1998, 33(2):3-5. [6] 葛文春,林强,孙德有,等. 大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J]. 岩石学报,1999,15(3):3-5. Ge Wenchun, Lin Qiang, Sun Deyou, et al. Geochemical Characteristics of the Mesozoic Basalts in Da Hinggan Ling:Evidence of the Mantle Crust Interaction[J]. Acta Petrol Sinica, 1993, 15(3):3-5. [7] Ji Fengying, Xin Huazhou, Lian Changzhang, et al. Geochronological and Geochemical Investigation of the Late Mesozoic Volcanic Rocks from the Northern Great Xing'an Range and Their Tectonic Implications[J]. International Journal of Earth Sciences, 2010, 99(2):357-378. [8] 隋振民,葛文春,吴福元,等. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J]. 岩石学报,2007,23(2):461-480. Sui Zhenmin, Ge Wenchun, Wu Fuyuan, et al. Zircon U-Pb Ages, Geochemistry and Its Petrogenesis of Jurassic Granites in Northeastern Part of the Da Hinggan Mts[J]. Acta Petrol Sinica, 2007, 23(2):461-480. [9] Tomurtogoo O, Windley B F, Kroner A, et al. Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shearzone, Central Mongolia:Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen[J]. Journal of the Geological Society, 2005, 162(1):125-134. [10] Mazukabzov A M, Donskaya T V, Gladkochub D P, et al. The Late Paleozoic Geodynamics of the West Transbaikalian Segment of the Central Asian Fold Belt[J]. Russian Geology and Geophysics, 2010, 51(5):482-491. [11] Zonenshain L P, Kuzmin M L, Natapov L M. Geology of the USSR:A Plate-Tectonics Synthesis[M]. Washington DC:American Geophysical Union, 1990:1-242. [12] Zorin Y A. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia[J]. Tectonophysics, 1999, 306(1):33-56. [13] Sorokin A A, Sorokin A P, Ponomarchuk V A, et al. The Age and Geochemistry of Volcanic Rocks on the Eastern Flank of the Umlekan-Ogodzha Volcanoplutonic Belt (Amur Region)[J]. Russian Geology and Geophysics, 2010, 51(4):369-379. [14] Kravchinsky V A, Cogné J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as Constrained by New Palaeomagnetic Data from the Mongol-Okhotsk Suture Zone, Siberia[J]. Geophysical Journal International, 2002, 148(1):34-57. [15] 张超. 大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代岩浆作用及其构造背景[D]. 长春:吉林大学,2020:1-155. Zhang Chao. Late Mesozoic Magmatism and Tectonic Setting of Bairin Left Banner-Jarud Banner Area in the Southern Great Xing'an Range[D]. Changchun:Jilin University, 2020:1-155. [16] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30. [17] 杨元江,庄倩,邓昌州,等. 黑龙江省呼中-塔河地区地球化学特征及找矿成果[J]. 物探与化探,2017,41(1):86-91. Yang Yuanjiang, Zhuang Qian, Deng Changzhou, et al. Geochemical Characteristics and Prospecting Achievements in Huzhong-Tahe Area of Heilongjiang Province[J]. Geophysical & Geochemical Exploration, 2017, 41(1):86-91. [18] 和钟铧,王启智,王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版),2020,50(2):405-424. He Zhonghua, Wang Qizhi, Wang Qiang. Geochemistry and Zircon U-Pb Ages of Clastic Rocks of Zhesi Formation in Suolun Region, Great Xing'an Range:Constraints on Origins of Sediment Provenance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2):405-424. [19] 余长胜,杨言辰,韩世炯,等. 大兴安岭下嘎来奥伊铅锌矿床钾长花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版),2020,50(4):1042-1058. Yu Changsheng, Yang Yanchen, Han Shijiong, et al. Petrogenesis of Moyite from Xiagalaiaoyi Pb-Zn Depositin Great Xing'an Rnage and Its Gological Significance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(4):1042-1058. [20] 吴兆剑,李津,韩效忠,等. 大兴安岭北段吉峰地区晚中生代花岗质岩石年龄、地球化学特征及其构造意义[J]. 地质通报,2020,39(Z1):234-253. Wu Zhaojian, Li Jin, Han Xiaozhong, et al. Geocehronology and Geochemistry of Late Mesozoic Igneous Rocks in Jifeng Area of Northern Da Hinggan Mountains and Their Tectonic Significance[J]. Geological Bulletin of China, 2020, 39(Z1):234-253. [21] 杨元江. 黑龙江省呼中地区地球化学特征及找矿远景评价[D]. 武汉:中国地质大学,2015:7-75. Yang Yuanjiang. The Characteristic of Geochemistry and the Perspective for Prospecting at Huzhong Region in Heilongjiang Province[D]. Wuhan:China University of Geoscience, 2015:7-75. [22] 杨元江,李成禄,邓昌州,等. 大兴安岭大洋山钼矿成矿岩体地球化学、锆石U-Pb年龄及构造背景[J]. 现代地质,2020,34(5):1092-1102. Yang Yuanjiang, Li Chenglu, Deng Changzhou, et al. Geochemistry, Zircon U-Pb Dating and Tectonic Setting of the Granitoid Related with the Dayangshan Molybdenum Deposit, Daxing'anling[J]. Geoscience, 2020, 34(5):1092-1102. [23] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43. [24] 硅酸盐岩石化学分析方法第28部分:16个主次成分量测定:GB/T 14506.28-2010[S]. 北京:中国标准出版社,2010:1-7. Methods for Chemical Analysis of Silicate Rocks:Part 28:16 Primary and Secondary Weight Component Determination:GB/T 14506.28-2010[S]. Beijing:Standards Press of China, 2010:1-7. [25] 硅酸盐岩石化学分析方法第30部分:44个元素量测定:GB/T 14506.30-2010[S]. 北京:中国标准出版社,2010:1-8. Methods for Chemical Analysis of Silicate Rocks Part 30:Determination of 44 Elements:GB/T 14506.30-2010[S]. Beijing:Standards Press of China, 2010:1-8. [26] 张永明,裴先治,李佐臣,等. 青海南山地区加里东期强过铝质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报,2019,38(5):742-756. Zhang Yongming, Pei Xianzhi, Li Zuochen, et al. Zircon U-Pb Age, Geochemical Characteristics and Geological Significance of the Caledonian Strongly Peraluminous Granites in the Nanshan Area, Qinghai Province[J]. Geological Bulletin of China, 2019, 38(5):742-756. [27] Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Earth Science Reviews, 1994, 37(3/4):215-224. [28] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. [29] Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4):247-263. [30] 黎彤,饶纪龙. 中国岩浆岩的平均化学成分[J]. 地质学报,1963,43(3):271-280. Li Tong, Rao Jilong. The Average Chemical Composition of Igneous Rocks in China[J]. Acta Geologic Sinica, 1963, 43(3):271-280. [31] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. [32] 马超,汤艳杰,英基丰. 俯冲带岩浆作用与大陆地壳生长[J]. 地球科学,2019,44(4):1128-1142. Ma Chao, Tang Yanjie, Ying Jifeng. Magmatism in Subduction Zones and Growth of Continental Crust[J]. Earth Science,2019, 44(4):1128-1142. [33] 李锦轶,高立明,孙桂华. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报,2007,23(3):565-582. Li Jinyi, Gao Liming, Sun Guihua, et al. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision Between Siberian and Sino-Korean Paleo-Plates[J]. Acta Petrologica Sinica, 2007, 23(3):565-582. [34] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891-931. [35] Wedepohl K H. The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7):1217-1232. [36] Hergt J M, Peate D W, Hawkesworth C J. The Petrogenesis of Mesozoic Gondwana Low-Ti Flood Basalts[J]. Earth and Planetary Science Letters, 1991, 105(1/2/3):134-148. [37] 姜春发,王宗起,李锦轶,等. 中央造山带开合构造[M]. 北京:地质出版社,2000:1-107. Jiang Chunfa, Wang Zongqi, Li Jinyi, et al. Open and Closed Structure of Central Orogenic Belt[M]. Beijing:Geological Publishing House, 2000:1-107. [38] 肖庆辉,邓晋福,马大铨,等. 花岗岩研究思维与方法[M]. 北京:地质出版社,2002:1-294. Xiao Qinghui, Deng Jinfu, Ma Daquan, et al. Thinking and Methods of Granite Researching[M]. Beijing:Geological Publishing House, 2002:1-294. [39] 张遵忠,顾连兴,吴昌志,等. 东天山印支早期尾亚石英正长岩:成岩作用及成岩意义[J]. 岩石学报,2006,22(5):1135-1149. Zhang Zunzhong, Gu Lianxing, Wu Changzhi, et al. Weiya Quartz Syenite in Early Indosinina from Eastern Tianshan Mountains:Petrogenesis and Tectonic Implications[J]. Acta Petrologica Sinica, 2006, 22(5):1135-1149. [40] 侯增谦,曲晓明,周继荣,等. 三江地区义敦岛弧碰撞造山过程:花岗岩记录[J]. 地质学报,2001,75(4):484-497. Hou Zengqian, Qu Xiaoming, Zhou Jirong, et al. Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region:Record of Granites[J]. Acta Geologic Sinica, 2001, 75(4):484-497. [41] Wedepohl K H. The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7):1217-1232. [42] 陆胜,王可勇,赵焕利,等.大兴安岭漠河前哨林场侵入岩年代学、岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版),2021,51(1):126-140. Lu Sheng, Wang Keyong, Zhao Huanli, et al. Geochronology and Geochemistry of Intrusive Rocks in Qianshao Forest Farm of Mohe Area, Great Xing'an Range[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1):126-140. [43] 唐杰. 额尔古纳地块中生代火成岩的年代学与地球化学:对蒙古-鄂霍茨克缝合带构造演化的制约[D]. 长春:吉林大学,2016:1-205. Tang Jie. Geochronology and Geochemistry of the Mesozoic Igneous Rocks in the Erguna Massif, NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Suture Zone[D]. Changchun:Jilin University, 2016:1-205. [44] Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing' an Range, Northeastern China:Implications for Subduction-Induced Delamination[J]. Chemical Geology, 2010, 276(3/4):144-165. [45] Ouyang H G, Mao J W, Santosh M, et al. Geodynamic Setting of Mesozoic Magmatism in NE China and Surrounding Regions:Perspectives from Spatio-Temporal Distribution Patterns of Ore Deposits[J]. Journal of Asian Earth Sciences, 2013, 78(15):222-236. [46] 马玉波,邢树文,肖克炎,等. 大兴安岭Cu-Mo-Ag多金属成矿带主要地质成矿特征及潜力分析[J]. 地质学报,2016,90(7):1316-1333. Ma Yubo, Xing Shuwen, Xiao Keyan, et al. Geological Characteristics and Mineral Resource Potential of the Cu-Mo-Ag Metallogenic Belt in Daxing'anling Mountains[J]. Acat Geologica Sinica, 2016, 90(7):1316-1333. [47] Xu W L, Pei F P, Wang F, et al. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China:Constraints on Tectonic Overprinting and Transformations Between Multiple Tectonic Regimes[J]. Journal of Asian Earth Sciences, 2013, 74(25):167-193. [48] Sun D Y, Gou J, Wang T H, et al. Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China-Subduction History of the Mongol-Okhotsk Oceanic Crust[J]. International Geology Review, 2013, 55(14):1801-1816. [49] Tang J, Xu W L, Wang F, et al. Geochronology, Geochemistry, and Deformation History of Late Jurassic-Early Cretaceous Intrusive Rocks in the Erguna Massif, NE China:Constraints on the Late Mesozoic Tectonic Evolution of the Mongol-Okhotsk Orogenic Belt[J]. Tectonophysics, 2015, 658:91-110. [50] Yang Y T, Guo Z X, Song C C, et al. A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous[J]. Gondwana Research, 2015, 28(3):1096-1116. [51] Li Y, Xu W L, Tang J, et al. Geochronology and Geochemistry of Mesozoic Intrusive Rocks in the Xing'an Massif of NE China:Implications for the Evolution and Spatial Extent of the Mongol-Okhotsk Tectonic Regime[J]. Lithos, 2018, 304/305/306/307:57-73. [52] 张旗. 中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J]. 岩石矿物学杂志,2013,32(1):113-128. Zhang Qi. Is the Mesozoic Magmatism in Eastern China Related to the Westward Subduction of the Pacific Plate?[J]. Acta Petrologica et Mineralogica, 2013, 32(1):113-128. [53] 李锦轶,莫申国,和政军,等. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J]. 地学前缘,2004,11(3):157-168. Li Jinyi, Mo Shenguo, He Zhengjun, et al. The Timing of Crustal Sinistral Strike-Slip Movement in the Northern Great Khing'an Ranges and Its Constraint on Reconstruction of the Crustal Tectonic Evolution of NE China and Adjacent Areas Since the Mesozoic[J]. Earth Science Frontiers, 2004, 11(3):157-168. [54] 武广,孙丰月,赵财胜,等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报,2005,50(20):96-106. Wu Guang, Sun Fengyue, Zhao Caisheng, et al. Discovery of Early Paleozoic Post Collisional Granite in the Northern Margin of the Eerguna Block and Its Geological Significance[J]. Chinese Science Bulletin, 2005, 50(20):96-106. [55] 武广,孙丰月,朱群,等. 上黑龙江盆地金矿床地质特征及成因探讨[J]. 矿床地质,2006,25(3):215-230. Wu Guang, Sun Fengyue, Zhu Qun, et al. Geological Characteristics and Genesis of Gold Deposits in Upper Heilongjiang Basin[J]. Mineral Deposits, 2006, 25(3):215-230. [56] 武广,孙丰月,赵财胜,等. 额尔古纳成矿带西北部金矿床流体包裹体研究[J]. 岩石学报,2007,23(9):2227-2240. Wu Guang, Sun Fengyue, Zhao Caisheng, et al. Fluid Inclusion Study on Gold Deposits in Northwestern Erguna Metallogenic Belt, China[J]. Acta Petrologica Sinica, 2007, 23(9):2227-2240. [57] 郑建平,牛贺才,汤华云,等. 鄂霍茨克洋与太平洋构造域叠合的岩浆作用与成矿响应[J]. 矿物岩石地球化学通报,2017,36(4):545-550. Zheng Jianping, Niu Hecai, Tang Huayun, et al. Magmatism and Metallogenesis in the Okhotsk and Paleo-Pacific Tectonic Domains[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4):545-550. [58] 佘宏全,李进文,向安平,等. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报,2012,28(2):571-594. She Hongquan, Li Jinwen, Xiang Anping, et al. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxing'anling and Its Implications to Geotectonic Evolution[J]. Acta Petrologica Sinica, 2012, 28(2):571-594. [59] 李锦轶,张进,刘建峰,等. 中国大陆主要变形系统[J]. 地学前缘,2014,21(3):226-245. Li Jinyi, Zhang Jin, Liu Jianfeng, et al. Major Deformation Systems in the Mainland of China[J]. Earth Science Frontiers, 2014, 21(3):226-245. [60] 袁建国,顾玉超,肖荣阁,等. 内蒙古锡林浩特东部地区早白垩世花岗岩地球化学、锆石U-Pb年龄及地质意义[J]. 现代地质,2017,31(1):20-32. Yuan Jianguo, Gu Yuchao, Xiao Rongge, et al. Geochemistry and Zircon U-Pb Dating of Granites in Early Cretaceous in Eastern Xilinhot, Inner Mongolia and Its Geological Implications[J]. Geoscience, 2017, 31(1):20-32. [61] 邓昌州. 大兴安岭北部中生代斑岩铜矿:成岩与成矿[D]. 长春:吉林大学,2019:1-120. Deng Changzhou. Petrology and Metallogenesis of the Porphyry Cu Deposits in the Northern Great Xing'an Range[D]. Changchun:Jilin University, 2019:1-120. [62] 徐立明,王大可,刘玉,等. 大兴安岭北段塔河南部早白垩世侵入岩年代学和地球化学[J]. 现代地质,2018,32(6):1212-1226. Xu Liming, Wang Dake, Liu Yu, et al. Age and Geochemistry of the Early Cretaceous Intrusive Rocks in Southern Tahe, Northern Great Xing'an Range[J]. Geoscience, 2018, 32(6):1212-1226. [63] 李诺,孙亚莉,李晶,等. 内蒙古乌努格吐山斑岩铜钼矿床辉钼矿铼锇等时线年龄及其成矿地球动力学背景[J]. 岩石学报,2007,23(11):2881-2888. Li Nuo, Sun Yali, Li Jing, et al. Molybdenite Re/Os Isochron Age of the Wunugetushan Porphyry Cu/Mo Deposit, Inner Mongolia and Its Implication for Metallogenic Geodynamics[J]. Acta Petrologica Sinica, 2007, 23(11):2881-2888. [64] Deng C Z, Sun D Y, Li G H, et al. Early Cretaceous Volcanic Rocks in the Great Xing'an Range:Late Effect of a Flat-Slab Subduction[J]. Journal of Geodynamics, 2019, 124(2):38-51. |
[1] | 张贵山, 邱红信, 温汉捷, 彭仁, 孟乾坤. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740-1752. |
[2] | 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769. |
[3] | 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852. |
[4] | 李天军, 黄志龙, 王瑞, 苟红光, 张品, 殷越. 银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2021, 51(4): 957-972. |
[5] | 史冬岩, 张坤, 张玉鹏, 高勇, 唐伟, 吕明奇. 黑龙江省浅覆盖区地物化特征与找矿标志——以黑河市340高地金矿化区为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1042-1053. |
[6] | 赵越, 刘敬党, 张国宾, 张艳飞. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1098-1118. |
[7] | 孙超, 苟军, 孙德有, 冯钊, 田丽. 黑龙江省西北部晚古生代I-A型花岗岩的成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1082-1097. |
[8] | 张雪, 翁凯, 赵晓健, 杜守礼, 尚颖. 新疆东天山卡拉塔格二叠纪火山岩成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1119-1138. |
[9] | 史冀忠, 牛亚卓, 许伟, 宋博, 王宝文. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693. |
[10] | 曾志杰, 陈雷. 南秦岭山阳—柞水矿集区夏家店金矿床微量-铂族元素地球化学特征及其对矿床成因的指示[J]. 吉林大学学报(地球科学版), 2021, 51(3): 704-722. |
[11] | 张超, 石绍山, 时溢, 魏明辉, 杨帆, 郇恒飞, 李文博, 王路远. 华北板块北缘东段中三叠世构造演化——来自辽宁法库地区侵入岩的证据[J]. 吉林大学学报(地球科学版), 2021, 51(3): 734-748. |
[12] | 田梦宇, 狄永军, 王帅, 贾一龙. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2021, 51(3): 749-766. |
[13] | 邓红宾, 李培龙, 魏华财, 何文劲, 杨鹏涛, 李宁, 唐华. 东昆仑造山带低山头花岗岩体岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 767-782. |
[14] | 康鹏宇, 刘传朋, 梁成, 冯爱平, 刘同, 宗传攀. 沂蒙山区土壤质量地球化学评价方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 877-886. |
[15] | 田兴旺, 罗冰, 孙奕婷, 刘冉, 李亚, 陈延贵, 周春林, 汪华, 李亚丁, 王尉, 王云龙, 杨岱林. 二叠系火山碎屑岩气藏天然气地球化学特征及气源分析——以四川盆地成都—简阳地区永探1井为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 325-335. |
|