lithology lecognition, deep learning, residual blocks, channel attention mechanism, U-Net
,"/> <p class="MsoNormal"> 松辽盆地中央坳陷区储层岩性智能识别方法

吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (5): 1611-1622.doi: 10.13278/j.cnki.jjuese.20220304

• 地球探测与信息技术 • 上一篇    下一篇

松辽盆地中央坳陷区储层岩性智能识别方法

王婷婷1,孙振轩1,戴金龙1,姜基露1,赵万春2   

  1. 1.东北石油大学电气信息工程学院,黑龙江大庆163318

    2.东北石油大学非常规油气研究院,黑龙江大庆163318

  • 出版日期:2023-09-26 发布日期:2023-11-04
  • 基金资助:

    国家自然科学基金项目(52074088,52174022,51574088,51404073);东北石油大学黑龙江省杰出青年后备人才项目(SJQHB201802,SJQH202002);东北石油大学西部油田开拓专项项目(XBYTKT202001);黑龙江省博士后科研启动项目(LBH-Q20074,LBH-Q21086)

Intelligent Identification Method of Reservoir Lithology in Central Depression of Songliao Basin

#br#

Wang Tingting1, Sun Zhenxuan1, Dai Jinlong1, Jiang Jilu1, Zhao Wanchun2

#br#   

  1. 1. School of Electrical Engineering & Information, Northeast Petroleum University, Daqing 163318, Heilongjiang, China

    2. Institute of Unconventional Oil & Gas, Northeast Petroleum University, Daqing 163318, Heilongjiang, China 

  • Online:2023-09-26 Published:2023-11-04
  • Supported by:
    Supported by the National Natural Science Foundation of China (52074088, 52174022, 51574088, 51404073), the Talented Reserves of Heilongjiang Province Science Foundation for Distinguished Young Scholars of Northeast Petro-leum University (SJQHB201802, SJQH202002), the Special Project of Western Oil Fields Development of Northeast Petroleum University (XBYTKT202001) and  the Project of Heilongjiang Postdoctoral Foundation (LBH-Q20074, LBH-Q21086)

摘要:

岩性信息的识别分类对油气储层分类以及储层岩石可压性评价具有重要意义。本文根据对深度学习网络U-Net进行改进,结合松辽盆地中央坳陷区实验数据进行对比和验证,提出了一种更适合测井数据的特征注意力融合网络(feature attention fusion Unet, FAF-Unet)。测井数据主要通过敏感性分析的方式选择特征参数(自然电位,声波时差,光电吸收截面指数,井径,密度,自然伽马以及深、浅侧向电阻率等),分析储层岩石岩性。FAF-Unet是一种融合残差块和通道注意力机制的网络,残差块可以更好地保留深度方向低级特征的数据,而通道注意力机制可以弥补竖向卷积时忽略横向通道之间联系的问题。分别对比了支持向量机、决策树、U-Net、添加有效通道注意力(efficient channel attention, ECA)机制的U-Net(ECA-Unet)、添加残差块的U-Net(Res-Unet)以及同时添加ECA和残差块的FAF-Unet 6种识别方法的准确率和召回率,结果表明,FAF-Unet的准确率与召回率均达到89.00%以上,在6种识别方法中识别效果最佳,且准确率与召回率的波动范围更小。

关键词: 岩性识别, 深度学习, 残差块, 通道注意力机制, U-Net

Abstract:

The recognition and classification of lithological information hold significant importance for categorizing oil and gas reservoirs and evaluating the compressibility of reservoir rocks. This study presents enhancements to the deep learning  network U-Net and conducts a comparative validation using experimental data from  central depression  of  Songliao Basin. We propose a more suitable feature attention fusion Unet (FAF-Unet) designed for well logging data. The selection of logging data primarily involves sensitivity analysis to identify characteristic parameters, including natural potential, acoustic time difference, photoelectric absorption cross-section index, wellbore diameter, density, natural gamma, and deep and shallow lateral resistivity. These parameters are analyzed to understand reservoir rock lithology. FAF-Unet is a network that amalgamates residual blocks and channel attention mechanisms. Residual blocks can better retain the data with lower-level features of the depth direction, and channel attention mechanisms can make up for the problem of ignoring the connection between  horizontal channels during vertical convolution. Comparing the accuracy and recall of six recognition methods, including support vector machine, decision tree, U-Net, U-Net with effective channel attention (ECA) mechanism, U-Net with residual block (Res-Unet), and FAF-Unet with both ECA and residual block, experimental results demonstrate that FAF-Unet achieves an accuracy and recall rate exceeding 89.00%. FAF-Unet outperforms the other five methods in terms of recognition performance and exhibits a narrower fluctuation range between accuracy and recall.


Key words: lithology lecognition')">

lithology lecognition, deep learning, residual blocks, channel attention mechanism, U-Net

中图分类号: 

  • P631.8
[1] 刘 霞, 孙英杰. 基于融合残差注意力机制的卷积神经网络地震信号去噪[J]. 吉林大学学报(地球科学版), 2023, 53(2): 609-.
[2] 张岩, 刘小秋, 李杰, 董宏丽, . 基于时频联合深度学习的地震数据重建[J]. 吉林大学学报(地球科学版), 2023, 53(1): 283-296.
[3] 熊越晗, 刘东燕, 刘东升, 王艳磊, 唐小山. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1597-1604.
[4] 王新民, 张超超. 基于深度学习的旧金山湾水质预测[J]. 吉林大学学报(地球科学版), 2021, 51(1): 222-230.
[5] 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .