吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (6): 1892-1906.doi: 10.13278/j.cnki.jjuese.20230230

• 地质工程与环境工程 • 上一篇    下一篇

增强型地热系统开发热-水动力-力学(THM)耦合模拟:以河北马头营凸起区为例

冯波1,曹云龙1,齐晓飞2 ,崔振鹏1,张兰新3   

  1. 1.吉林大学新能源与环境学院,长春130021
    2.河北省煤田地质局第二地质队,河北邢台054001
    3.山东省地矿工程勘察院,济南250014

  • 出版日期:2023-11-26 发布日期:2023-12-13
  • 基金资助:
    国网青海省电力公司科研项目(B7280722E072);吉林省科技厅重点研发项目(20200403147SF)

Thermal-Hydrodynamic-Mechanical (THM) Coupling Simulation of Enhanced Geothermal System Development in Matouying Uplift Area, Hebei Province

Feng Bo1,Cao Yunlong1, Qi Xiaofei2,Cui Zhenpeng1,Zhang Lanxin3   

  1. 1.吉林大学建设工程学院,长春130026
    2.地下水资源与环境教育部重点实验室(吉林大学), 长春130021
    3.地热资源开发技术与装备教育部工程研究中心(吉林大学), 长春130021
  • Online:2023-11-26 Published:2023-12-13
  • Supported by:
    the Scientific Research Project of State Grid Qinghai Electric Power Company (B7280722E072)and the Key R&D Project of Jilin Provincial Science and Technology Department  (20200403147SF)

摘要: 增强型地热系统(EGS)的裂隙热储层在长期开采过程中,由于不断地提取高温干热岩体的热量,致使高温花岗岩岩体温度下降,进而诱发岩体产生二次破裂,甚至出现流体短路,降低地热系统开采效率。为了保证EGS热能的稳定提取,需要建立试验场地的热-水动力-力学(THM)耦合模型,分析水动力和热效应对该储层裂隙发育规律的影响。本文基于河北马头营凸起区 EGS开发场地的循环注水试验数据,建立场地热-水动力-力学耦合模型,通过模型模拟结果与现场观测结果进行比较,先验证了THM耦合模型的准确性,然后利用校正后的模型预测了不同注入方案下,EGS储层渗透率的提高和增产带的空间范围,揭示了储层裂隙增产带的范围受温度、压力、注入速率的影响情况。结果表明:经过63 d的增产处理,该模型预测的增产层体积约为10万m3;提高注水压力能刺激现有的裂隙发生剪切性破裂,拓宽增产带的区域;减小注水的温度有助于提升流体的穿透能力,扩大储层的增产带;在水力压裂的开始阶段,适当利用冷水注入有利于提高储层渗透率,且提高注入速率会使储层增产带的范围扩大。

关键词: 增强型地热系统, 水力压裂, 马头营凸起区, 热-水动力-力学(THM)耦合模型, TOUGH2Biot 

Abstract: In the long-term mining process of the fractured thermal reservoir of the enhanced geothermal system (EGS), due to the constant extraction of heat from the high-temperature dry hot rock mass, the temperature of the high-temperature granite mass drops, which induces the secondary fracture of the rock mass, and even the occurrence of fluid short circuit reduces the mining efficiency of the geothermal system. In order to ensure the stable extraction of EGS heat energy, it is necessary to establish the coupling model of fluid-solid heat transfer, hydrodynamic and fracture deformation in the test site, and analyze the influence of hydrodynamic and thermal effects on the fracture development law of the reservoir. Based on the test data of circulating water injection at the EGS development site in Matouying Bulge area, Hebei Province, this paper established a coupling model of thermo-hydro-mechanical (THM) of microfractures in the site. The accuracy of the THM coupling model was verified by comparing the model simulation results with the field observation results. The increase of permeability of EGS reservoir and the spatial range of stimulation zone reveal that the range of stimulation zone of reservoir fracture is affected by temperature, pressure and injection flow. The results show that increasing the water injection pressure can stimulate the shear fracture of existing fractures and broaden the area of stimulation zone. Reducing the temperature of water injection can improve the permeability of fluid and expand the reservoir stimulation zone. In the initial stage of hydraulic fracturing, the proper use of cold water injection is conducive to improving the reservoir permeability, and increasing the injection flow will expand the range of reservoir stimulation zone.

Key words:  , enhanced geothermal system (EGS), hydraulic fracturing, Matouying uplift area, thermo-hydro-mechanical modeling(THM), TOUGH2Biot

中图分类号: 

  • TK529
[1] 罗卫锋, 胡志方, 王胜建, 杨云见, 张林, 张云枭. 基于可控源电磁技术的页岩压裂监测试验——以宜昌地区鄂阳页2HF井为例[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1338-.
[2] 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172.
[3] 周舟, 金衍, 曾义金, 张旭东, 周健, 汪文智, 孟翰. 青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1425-1430.
[4] 樊冬艳, 孙海, 姚军, 李华锋, 严侠, 张凯, 张林. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3): 797-806.
[5] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[6] 许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.
[7] 郭亮亮, 张延军, 许天福, 金显鹏. 大庆徐家围子不同储层改造的干热岩潜力评估[J]. 吉林大学学报(地球科学版), 2016, 46(2): 525-535.
[8] 曹文炅, 陈继良, 蒋方明. 工质变物性对EGS热开采过程影响的数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1180-1188.
[9] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖长来,梁秀娟,崔建铭,兰盈盈,张君,李书兰,梁瑞奇,郑策. 确定含水层参数的全程曲线拟合法[J]. J4, 2005, 35(06): 751 -0755 .
[2] 孙永河,付晓飞,吕延防,付广,阎冬. 地震泵抽吸作用与油气运聚成藏物理模拟[J]. J4, 2007, 37(1): 98 -0104 .
[3] 嵇艳鞠, 栾卉, 李肃义, 万玲, 王远, 许洋铖, 李丽, 林君. 全波形时间域航空电磁探测分辨率[J]. J4, 2011, 41(3): 885 -891 .
[4] 刘建峰,迟效国,周燕,王铁夫,金巍,周建波,董春艳,黎广荣. 小兴安岭东北部金林岩体全岩-角闪石Rb-Sr年龄[J]. J4, 2005, 35(06): 690 -0693 .
[5] 和钟铧,刘招君,郭宏伟,侯 伟,董林森. 漠河盆地中侏罗世沉积源区分析及地质意义[J]. J4, 2008, 38(3): 398 -0404 .
[6] 陶崇智,邓超,白国平,王大鹏,牛新杰,白建朴,郑妍. 巴西坎波斯盆地和桑托斯盆地油气分布差异及主控因素[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1753 -1761 .
[7] 柳波, 黄志龙, 王玫玫, 张建波, 陈建琪. 吐哈盆地胜北构造带油气成藏过程[J]. J4, 2011, 41(4): 1006 -1012 .
[8] 伍登浩, 高顺宝, 郑有业, 田坎, 张永超, 姜军胜, 余泽章, 黄鹏程. 西藏班公湖—怒江成矿带南侧矽卡岩型铜多金属矿床S、Pb同位素组成及成矿物质来源[J]. 吉林大学学报(地球科学版), 2018, 48(1): 70 -86 .
[9] 李向东, 何幼斌. 宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析[J]. 吉林大学学报(地球科学版), 2020, 50(1): 139 -157 .
[10] 赵汉卿, 陈晓明, 李超, 吴穹螈, 王迪. 渤海湾盆地垦利L油田古近系沙三上段优质储层物性控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 653 -661 .