吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (6): 1808-1816.doi: 10.13278/j.cnki.jjuese.201506204
田家林1,2, 杨志1, 付传红1, 杨琳1, 李友1, 朱永豪1
Tian Jialin1,2, Yang Zhi1, Fu Chuanhong1, Yang Lin1, Li You1, Zhu Yonghao1
摘要:
针对现有岩石破碎研究的现状以及不足,进行高频微幅冲击振动作用下的岩石破碎行为计算方法研究。首先建立高频微幅冲击振动模型,在此基础上建立求解破岩体积、破岩比功、岩石裂纹长度的计算方法,并分析冲击频率、幅值对岩石破岩效率的影响。通过对比试验与算例结果,验证了计算方法的可靠性。结果表明:当冲击频率增加到2 000 Hz时,冲击时间的周期将减小到0.001 s,冲击力将会增加到12 900 N,钻头吃入岩石的深度以及冲击末速度也对应增加;并且高冲击频率、低幅值能够增加破岩体积、减小破岩比功、增加岩石裂纹长度。研究结论对于提高破岩效率,进行高频微幅冲击振动破岩的技术研究与工具研制具有参考价值。
中图分类号:
[1] Li Zifeng. Criteria for Jet Cavitation and Cavitation Jet Drilling[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 71: 204-207.[2] Barani A, Amini S, Paktinat H, et al. Built-Up Edge Investigation in Vibration Drilling of Al2024-T6[J]. Ultrasonics, 2014, 54: 1300-1310.[3] Aron D, Ryan W, Abhijeet N, et al. Application of a Torsional Impact Hammer to Improve Drilling Efficiency[C]//Society of Petroleum Engineers. SPE Annual Technical Conference and Exhibition. Denver: SPE, 2011:1-11.[4] 殷其雷, 殷琨, 柳鹤, 等. 潜孔锤反循环钻进技术在某水电站的试验应用[J]. 吉林大学学报:地球科学版, 2014,44 (3): 961-968. Yin Qilei, Yin Kun, Liu He, et al. Application Test of DTH Hammer Reverse Circulation Drilling Technique in a Hydropower Station[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(3): 961-968.[5] 况雨春, 朱志谱, 蒋海军, 等. 单粒子冲击破岩实验与数值模拟[J].石油学报, 2012, 33(6): 1059-1063. Kuang Yuchun, Zhu Zhipu, Jiang Haijun, et al. Experimental Study and Numerical Simulation of Single-Particle Impacting Rock[J]. Acta Petrolei Sinica, 2012, 33(6):1059-1063.[6] Zhu Haiyan, Deng Jingen, Xie Yuhong, et al. Rock Mechanics Characteristic of Complex Formation and Faster Drilling Techniques in Western South China Sea Oilfields[J]. Ocean Engineering, 2012,44:33-45.[7] 伍开松, 荣明, 李德龙, 等. 双粒子联合冲击破岩仿真研究[J]. 岩土力学,2009,30(增刊1): 19-23. Wu Kaisong, Rong Ming, Li Delong, et al. Simulation Study of Impacting Breaking Rock by Double Particle[J]. Rock and Soil Mechanics, 2009, 30(Sup.1):19-23.[8] 石旭飞, 张文静, 王寒梅, 等. 人工回灌过程中的水-岩相互作用模拟[J]. 吉林大学学报: 地球科学版, 2013,43 (1): 220-227. Shi Xufei, Zhang Wenjing, Wang Hanmei, et al. Modeling of Water-Rock Interaction During the Artificial Recharge[J]. Journal of Jilin University: Earth Science Edition, 2013,43 (1): 220-227.[9] 朱海燕, 刘清友, 邓金根, 等. 冲旋钻井条件下的岩石破碎机理[J]. 应用基础与工程科学学报, 2012, 20(4): 622-630. Zhu Haiyan, Liu Qingyou, Deng Jingen, et al. Rock-Breaking Mechanism of Rotary-Percussive Drilling[J].Journal of Basic Science and Engineering, 2010,20(4):622-630.[10] Tan Songcheng,Fang Xiaohong,Yang Kaihua,et al.A New Composite Impregnated Diamond Bit for Extra-Hard, Compact, and Nonabrasive Rock Formation[J].Journal of Refractory Metals and Hard Materials, 2014, 43:186-192.[11] Liu Songyong, Liu Zenghui, Cui Xinxia, et al. Rock Breaking of Conical Cutter with Assistance of Front and Rear Water Jet[J]. Tunnelling and Underground Space Technology, 2014, 42:78-86.[12] 李广国, 索忠伟, 王金荣, 等. 塔河油田液动射流冲击器+PDC钻头提速技术[J]. 石油钻探技术, 2013,41(5): 71-75. Li Guangguo, Suo Zhongwei, Wang Jinrong, et al. Improve ROP with Hydraulic Percussion Hammer and PDC Bit in Tahe Oilfield[J].Petroleum Drilling Techniques, 2013, 41(5):71-75.[13] 孙友宏, 高科, 张丽君, 等. 耦合仿生孕镶金刚石钻头高效耐磨机理[J]. 吉林大学学报:地球科学版, 2012, 42(增刊3): 220-225. Sun Youhong, Gao Ke, Zhang Lijun, et al. High Drilling Efficiency and Wear-Resistant Mechanism of Coupling Bionics Impregnated Diamond Bit[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(Sup.3):220-225.[14] 闫铁, 李玮, 毕雪亮, 等.一种基于破碎比功的岩石破碎效率评价新方法[J]. 石油学报, 2009,30(2): 291-294. Yan Tie, Li Wei, Bi Xueliang, et al. A New Evaluation Method for Rock-Crushing Efficiency Based on Crushing Work Ratio[J]. Acta Petrolei Sinica, 2009, 30(2):291-294.[15] Lu Yiyu, Tang Jiren, Ge Zhaolong, et al. Hard Rock Drilling Technique with Abrasive Water Jet Assistance[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60: 47-56. |
[1] | 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444. |
[2] | 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267. |
[3] | 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533. |
[4] | 安玉科, 吴玮江, 张文, 姚青青, 宋建, 张宏宏. 抗滑桩裂纹控制荷载结构设计法及工程应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 171-178. |
[5] | 吴建光, 张平, 吕昊, 曾晓献. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 255-264. |
[6] | 崔洪亮, 于淼, 常天英, 陈建冬, 赵恩才, 郑妍, 刘野, 周天水. 应用于海洋环境和海洋工程的光纤传感技术[J]. 吉林大学学报(地球科学版), 2017, 47(1): 279-293. |
[7] | 兰凯, 刘香峰. 钻柱恶性振动识别与抑制技术研究进展[J]. 吉林大学学报(地球科学版), 2017, 47(1): 203-214. |
[8] | 冯晅, 鲁晓满, 刘财, 周超, 金泽龙, 张明贺. 基于逐减随机震源采样法的频率域二维黏滞声波方程全波形反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1865-1873. |
[9] | 张广智, 孙昌路, 潘新朋, 张志明, 姜岚杰, 印兴耀. 变密度声波全波形反演中密度影响因素及反演策略[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1550-1560. |
[10] | 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259. |
[11] | 高成, 孙建国. 不同域的局部平面波分解应用与对比[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1523-1529. |
[12] | 于德武, 龚胜平. 对迭代法位场向下延拓方法的剖析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 934-940. |
[13] | 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. |
[14] | 郭振波,李振春. 起伏地表条件下频率-空间域声波介质正演模拟[J]. 吉林大学学报(地球科学版), 2014, 44(2): 683-693. |
[15] | 朱渊,余斌,亓星,王涛,陈源井. 地形条件对泥石流发育的影响:以岷江流域上游为例[J]. 吉林大学学报(地球科学版), 2014, 44(1): 268-277. |
|