吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (6): 1808-1816.doi: 10.13278/j.cnki.jjuese.201506204

• 地质工程与环境工程 • 上一篇    下一篇

高频微幅冲击振动作用下岩石破碎行为计算方法

田家林1,2, 杨志1, 付传红1, 杨琳1, 李友1, 朱永豪1   

  1. 1. 西南石油大学机电工程学院, 成都 610500;
    2. 西南交通大学机械工程学院, 成都 610031
  • 收稿日期:2015-03-28 发布日期:2015-11-26
  • 作者简介:田家林(1979),男,副教授,博士,主要从事机械设计及理论、井下工具和钻井动力学理论研究,E-mail:tianjialin001@gmail.com。
  • 基金资助:

    石油天然气装备教育部重点实验室开放课题(OGE201403-05);国家自然科学基金项目(51074202,11102173);四川省教育厅成果转化重大培育项目(12ZZ003,No.667)

Calculation Method of Rock-Breaking Behavior Under Impact Vibration of High Frequency and Micro Amplitude

Tian Jialin1,2, Yang Zhi1, Fu Chuanhong1, Yang Lin1, Li You1, Zhu Yonghao1   

  1. 1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2015-03-28 Published:2015-11-26

摘要:

针对现有岩石破碎研究的现状以及不足,进行高频微幅冲击振动作用下的岩石破碎行为计算方法研究。首先建立高频微幅冲击振动模型,在此基础上建立求解破岩体积、破岩比功、岩石裂纹长度的计算方法,并分析冲击频率、幅值对岩石破岩效率的影响。通过对比试验与算例结果,验证了计算方法的可靠性。结果表明:当冲击频率增加到2 000 Hz时,冲击时间的周期将减小到0.001 s,冲击力将会增加到12 900 N,钻头吃入岩石的深度以及冲击末速度也对应增加;并且高冲击频率、低幅值能够增加破岩体积、减小破岩比功、增加岩石裂纹长度。研究结论对于提高破岩效率,进行高频微幅冲击振动破岩的技术研究与工具研制具有参考价值。

关键词: 高频, 微幅, 振动, 频率, 破岩, 裂纹

Abstract:

To improve the existing technology of rock breaking, this paper presents one method for calculating rock-breaking behavior under shock vibration of high frequency and micro amplitude. Firstly, a shock vibration model of high frequency and micro amplitude is established. On this basis, rock-breaking volume, rock crushing work ratio, and crack length are calculated. And then, the impact of frequency and amplitude on the rock-breaking efficiency are analyzed. The results show that the circle of impact time decreases to 0.001 s when the frequency increases to 2 000 Hz; while the impact force increases to 12 900 N, and the bit penetration and final impact velocity are also increased. High frequency and low amplitude can increase the rock-breaking volume, reduce the rock crushing work ratio, and increase the rock crack length. The reliability of the calculation method is verified through comparison of the calculation results with the experimental tests. The study results are useful to improve the rock-breaking technology, efficiency, as well as the tool development for rock breaking under shock vibration of high frequency and micro amplitude.

Key words: high frequency, micro amplitude, vibration, frequency, rock breaking, crack

中图分类号: 

  • P634.5

[1] Li Zifeng. Criteria for Jet Cavitation and Cavitation Jet Drilling[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 71: 204-207.

[2] Barani A, Amini S, Paktinat H, et al. Built-Up Edge Investigation in Vibration Drilling of Al2024-T6[J]. Ultrasonics, 2014, 54: 1300-1310.

[3] Aron D, Ryan W, Abhijeet N, et al. Application of a Torsional Impact Hammer to Improve Drilling Efficiency[C]//Society of Petroleum Engineers. SPE Annual Technical Conference and Exhibition. Denver: SPE, 2011:1-11.

[4] 殷其雷, 殷琨, 柳鹤, 等. 潜孔锤反循环钻进技术在某水电站的试验应用[J]. 吉林大学学报:地球科学版, 2014,44 (3): 961-968. Yin Qilei, Yin Kun, Liu He, et al. Application Test of DTH Hammer Reverse Circulation Drilling Technique in a Hydropower Station[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(3): 961-968.

[5] 况雨春, 朱志谱, 蒋海军, 等. 单粒子冲击破岩实验与数值模拟[J].石油学报, 2012, 33(6): 1059-1063. Kuang Yuchun, Zhu Zhipu, Jiang Haijun, et al. Experimental Study and Numerical Simulation of Single-Particle Impacting Rock[J]. Acta Petrolei Sinica, 2012, 33(6):1059-1063.

[6] Zhu Haiyan, Deng Jingen, Xie Yuhong, et al. Rock Mechanics Characteristic of Complex Formation and Faster Drilling Techniques in Western South China Sea Oilfields[J]. Ocean Engineering, 2012,44:33-45.

[7] 伍开松, 荣明, 李德龙, 等. 双粒子联合冲击破岩仿真研究[J]. 岩土力学,2009,30(增刊1): 19-23. Wu Kaisong, Rong Ming, Li Delong, et al. Simulation Study of Impacting Breaking Rock by Double Particle[J]. Rock and Soil Mechanics, 2009, 30(Sup.1):19-23.

[8] 石旭飞, 张文静, 王寒梅, 等. 人工回灌过程中的水-岩相互作用模拟[J]. 吉林大学学报: 地球科学版, 2013,43 (1): 220-227. Shi Xufei, Zhang Wenjing, Wang Hanmei, et al. Modeling of Water-Rock Interaction During the Artificial Recharge[J]. Journal of Jilin University: Earth Science Edition, 2013,43 (1): 220-227.

[9] 朱海燕, 刘清友, 邓金根, 等. 冲旋钻井条件下的岩石破碎机理[J]. 应用基础与工程科学学报, 2012, 20(4): 622-630. Zhu Haiyan, Liu Qingyou, Deng Jingen, et al. Rock-Breaking Mechanism of Rotary-Percussive Drilling[J].Journal of Basic Science and Engineering, 2010,20(4):622-630.

[10] Tan Songcheng,Fang Xiaohong,Yang Kaihua,et al.A New Composite Impregnated Diamond Bit for Extra-Hard, Compact, and Nonabrasive Rock Formation[J].Journal of Refractory Metals and Hard Materials, 2014, 43:186-192.

[11] Liu Songyong, Liu Zenghui, Cui Xinxia, et al. Rock Breaking of Conical Cutter with Assistance of Front and Rear Water Jet[J]. Tunnelling and Underground Space Technology, 2014, 42:78-86.

[12] 李广国, 索忠伟, 王金荣, 等. 塔河油田液动射流冲击器+PDC钻头提速技术[J]. 石油钻探技术, 2013,41(5): 71-75. Li Guangguo, Suo Zhongwei, Wang Jinrong, et al. Improve ROP with Hydraulic Percussion Hammer and PDC Bit in Tahe Oilfield[J].Petroleum Drilling Techniques, 2013, 41(5):71-75.

[13] 孙友宏, 高科, 张丽君, 等. 耦合仿生孕镶金刚石钻头高效耐磨机理[J]. 吉林大学学报:地球科学版, 2012, 42(增刊3): 220-225. Sun Youhong, Gao Ke, Zhang Lijun, et al. High Drilling Efficiency and Wear-Resistant Mechanism of Coupling Bionics Impregnated Diamond Bit[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(Sup.3):220-225.

[14] 闫铁, 李玮, 毕雪亮, 等.一种基于破碎比功的岩石破碎效率评价新方法[J]. 石油学报, 2009,30(2): 291-294. Yan Tie, Li Wei, Bi Xueliang, et al. A New Evaluation Method for Rock-Crushing Efficiency Based on Crushing Work Ratio[J]. Acta Petrolei Sinica, 2009, 30(2):291-294.

[15] Lu Yiyu, Tang Jiren, Ge Zhaolong, et al. Hard Rock Drilling Technique with Abrasive Water Jet Assistance[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60: 47-56.

[1] 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444.
[2] 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267.
[3] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[4] 安玉科, 吴玮江, 张文, 姚青青, 宋建, 张宏宏. 抗滑桩裂纹控制荷载结构设计法及工程应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 171-178.
[5] 吴建光, 张平, 吕昊, 曾晓献. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 255-264.
[6] 崔洪亮, 于淼, 常天英, 陈建冬, 赵恩才, 郑妍, 刘野, 周天水. 应用于海洋环境和海洋工程的光纤传感技术[J]. 吉林大学学报(地球科学版), 2017, 47(1): 279-293.
[7] 兰凯, 刘香峰. 钻柱恶性振动识别与抑制技术研究进展[J]. 吉林大学学报(地球科学版), 2017, 47(1): 203-214.
[8] 冯晅, 鲁晓满, 刘财, 周超, 金泽龙, 张明贺. 基于逐减随机震源采样法的频率域二维黏滞声波方程全波形反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1865-1873.
[9] 张广智, 孙昌路, 潘新朋, 张志明, 姜岚杰, 印兴耀. 变密度声波全波形反演中密度影响因素及反演策略[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1550-1560.
[10] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[11] 高成, 孙建国. 不同域的局部平面波分解应用与对比[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1523-1529.
[12] 于德武, 龚胜平. 对迭代法位场向下延拓方法的剖析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 934-940.
[13] 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951.
[14] 郭振波,李振春. 起伏地表条件下频率-空间域声波介质正演模拟[J]. 吉林大学学报(地球科学版), 2014, 44(2): 683-693.
[15] 朱渊,余斌,亓星,王涛,陈源井. 地形条件对泥石流发育的影响:以岷江流域上游为例[J]. 吉林大学学报(地球科学版), 2014, 44(1): 268-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!