吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1018-1029.doi: 10.13278/j.cnki.jjuese.20170051

• 地质与资源 • 上一篇    下一篇

含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例

赵谦平1,2,3, 张丽霞1,2,3, 尹锦涛1,2,3, 俞雨溪4, 姜呈馥1,2,3, 王晖1,2,3, 高潮1,2,3   

  1. 1. 陕西延长石油(集团)有限责任公司研究院, 西安 710075;
    2. 陕西省页岩气勘探开发工程技术研究中心, 西安 710075;
    3. 陕西省陆相页岩气成藏与开发重点实验室, 西安 710075;
    4. 中国地质科学院地质力学研究所, 北京 100081
  • 收稿日期:2017-09-13 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 尹锦涛(1983-),男,工程师,主要从事非常规油气地质方面的研究,E-mail:ycyinjintao@qq.com E-mail:ycyinjintao@qq.com
  • 作者简介:赵谦平(1971-),男,高级工程师,主要从事石油天然气地质方面的研究,E-mail:291431053@qq.com
  • 基金资助:
    国家科技重大专项(2017ZX05039-001-005);陕西延长石油集团科技计划项目(ycsy2017-ky-A-20)

Pore Structure and Physical Characteristics of Shale Reservoir Interbedded with Silty Layers: An Example from Zhangjiatan Lacustrine Shale

Zhao Qianping1,2,3, Zhang Lixia1,2,3, Yin Jintao1,2,3, Yu Yuxi4, Jiang Chengfu1,2,3, Wang Hui1,2,3, Gao Chao1,2,3   

  1. 1. Research Institute of Shaanxi Yanchang Petroleum(Group) Co., Ltd., Xi'an 710075, China;
    2. Engineering Technology Research Center of Shale Gas Exploration and Exploitation, Shaanxi Province, Xi'an 710075, China;
    3. Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation, Shaanxi Province, Xi'an 710075, China;
    4. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
  • Received:2017-09-13 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Science and Technology Major Project(2017ZX05039-001-005)and Shaanxi Yanchang Petroleum Group Science and Technology Project(ycsy2017-ky-A-20)

摘要: 鄂尔多斯盆地东南部延长组张家滩页岩储层中发育有大量粉砂质层,全面系统地理清张家滩页岩孔隙结构和物性特征,需要对比研究粉砂质纹层发育页岩、粉砂质层不发育的泥质页岩以及粉砂岩。本文选取了22块页岩样品,通过压汞法、气体吸附法和气测孔渗法等多种测试手段,结合扫描电镜观察,在对组成3种岩石类型的粉砂质层和泥质层孔隙发育类型研究的基础上,分析了3种岩石类型孔隙结构和物性特征的差异,并讨论了造成上述差异的影响因素。结果表明,粉砂质纹层发育页岩和粉砂岩孔径在100 nm以上的中-大孔孔体积较大,具有更好的储集和渗流能力。通过对比粉砂质层和泥质层的组分、沉积结构和成岩作用等的差异可知:粉砂质层中石英、长石等粉砂级刚性碎屑颗粒的富集有利于原始孔隙的形成和在物理压实过程中的保存;有机酸存在造成的酸性成岩环境有利于长石等颗粒发育溶蚀孔隙;液态烃等在颗粒表面形成的薄膜能够有效地抑制石英等胶结作用的发生。与泥质层相比,粉砂质层具有更好的孔隙形成和保存条件,使得粉砂质纹层发育页岩和粉砂岩的孔隙结构和物性特征明显优于泥质页岩。

关键词: 鄂尔多斯盆地, 页岩, 储层, 粉砂质纹层, 孔隙结构, 物性特征

Abstract: To systematically study the pore structure and physical characteristics of the shale reservoir, amounts of silty layers were investigated to compare the silty laminated shale, the clayey shale without silty laminae and the siltstone interbeds in the continental shale gas reservoir of Zhangjiatan in the Yanchang Formation, Ordos basin. SEM observation, mercury injection capillary pressure, gas adsorption, porosity and permeability tests were conducted to the 22 samples covering 3 kinds of lithologies in the shale reservoir. The pore types of the clayey layer and the silty layer in the 3 lithologies were studied,and the discrepancies in pore structure and physical properties between the 3 lithologies were analyzed. The results show that the silty laminated shale and the siltstone have larger meso-pore and macro-pore volume with the pore size larger than 100 nm,and they have better fluid storage capacity and higher permeability. Based on the comparative analysis of the compositions, sedimentary texture and diagenesis, it is concluded that the silt-sized brittle grains in the silty layers, such as quartz and feldspars, are favorable for the development of inter-particle pores,and hard to be compacted. The organic acid can also improve the development of dissolution pores in feldspars. The cementation of quartz and other minerals can be inhibited when the grains are coated by liquid hydrocarbons. The silty layer is favorable for pore development and preservation. The silty laminated shale and the siltstone have better pore structures and physical properties than the clayey shale.

Key words: Ordos basin, shale, reservoir, silty laminae, pore structure, physical characteristics

中图分类号: 

  • P618.13
[1] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types,Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance[J]. Acta PetroleiSinica, 2012, 33(2):173-187.
[2] 杨峰, 宁正福, 胡昌蓬,等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2):302-311. Yang Feng, Ning Zhengfu, Hu Changpeng, et al. Characterization of Microscopic Pore Structures in Shale Reservoirs[J]. Acta Petrolei Sinica, 2013,34(2):302-311.
[3] 杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002. Yang Junjie. Structural Evolution and Hydrocarbon Distribution Law in Ordos Basin[M].Beijing:Petroleum Industry Press,2002.
[4] 牟泽辉,朱红权,张克银,等.鄂尔多斯盆地南部中生界成油体系[M].北京:石油工业出版社,2001:1-10. Mu Zehui, Zhu Hongquan, Zhang Keyin, et al. The Oil-Forming System of Mesozoic in the South Ordos Basin[M]. Beijing:Petroleum Industry Press,2001:1-10.
[5] 寇雨, 周文. 赵毅南, 等. 鄂尔多斯盆地长7油层组页岩吸附特征与类型及吸附气量影响因素[J].岩性油气藏, 2016, 28(6):52-57. Kou Yu, Zhou Wen, Zhao Yinan, et al. Adsorption Characteristics,Types and Influencing Factors of Chang 7 Shale of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2016, 28(6):52-57.
[6] 陈瑞银, 罗晓容, 陈占坤, 等. 鄂尔多斯盆地埋藏演化史恢复[J]. 石油学报, 2006, 27(2):43-47. Chen Ruiying, Luo Xiaorong, Chen Zhankun, et al. Restoration of Burial History of Four Periods in Ordos Basin[J]. Acta PetroleiSinica, 2006, 27(2):43-47.
[7] 王香增,张金川,曹金舟,等.陆相页岩气资源评价初探:以延长直罗-下寺湾区中生界长7段为例[J].地学前缘,2012,9(2):192-197. Wang Xiangzeng, Zhang Jinchuan, Cao Jinzhou, et al. A Preliminary Discussion on Evaluation of Continental Shale Gas Resources:A Case Study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan Area of Yanchang[J]. Earth Science Frontier, 2012, 9(2):192-197.
[8] 姜呈馥,王香增,张丽霞,等.鄂尔多斯盆地东南部延长组长7段陆相页岩气地质特征及勘探潜力评价[J].中国地质, 2013,20(6):1880-1888. Jiang Chengfu, Wang Xiangzeng, Zhang Lixia, et al. Geological Characteristics of Shale and Exploration Potential of Continental Shale Gas in 7th Member of Yanchang Formation, Southeast Ordos Basin[J]. Geology in China, 2013,20(6):1880-1888.
[9] 王香增,高胜利,高潮.鄂尔多斯盆地南部中生界陆相页岩气地质特征[J].石油勘探与开发,2014,41(3):294-304. Wang Xiangzeng, Gao Shengli, Gao Chao. Geological Features of Mesozoic Continental Shale Gas in South of Ordos Basin, NW China[J]. Petroleum Exploration and Development,2014,41(3):294-304.
[10] 程明,罗晓容,雷裕红,等.鄂尔多斯盆地张家滩页岩粉砂质夹层/纹层分布、分形特征和估算方法研究[J].天然气地球科学,2015, 26(5):845-854. Cheng Ming, Luo Xiaorong, Lei Yuhong, et al. The Distribution, Fractal Characteristic and Thickness Estimation of Silty Laminae and Beds in Zhangjiatan Shale, Ordos Basin[J]. Natural Gas Geoscience,2015,26(5):845-854.
[11] Lei Yuhong, Luo Xiaorong, Wang Xiangzeng, et al. Characteristics of Silty Laminae in Zhangjiatan Shale of Southeastern Ordos Basin, China:Implications for Shale Gas formation[J]. AAPG Bulletin, 2015, 99(4):661-687.
[12] 徐勇,胡士骏,陈国俊,等. 鄂尔多斯盆地东南部延长组长7段页岩孔隙特征与吸附能力[J]. 岩性油气藏, 2016, 28(6):30-35. Xu Yong, Hu Shijun, Chen Guojun, et al. Pore Characteristics and Adsorption Capacity of Chang 7 Shale of Yanchang Formation in the Southeastern Ordos Basin[J]. Lithologic Reservoirs, 2016, 28(6):30-35.
[13] 熊健, 罗丹序, 刘向君,等. 鄂尔多斯盆地延长组页岩孔隙结构特征及其控制因素[J]. 岩性油气藏, 2016, 28(2):16-23. Xiong Jian, Luo Danxu, Liu Xiangjun, et al. Characteristics and Controlling Factors of Shale Pore Structure of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2016, 28(2):16-23.
[14] 白永强,刘美,杨春梅,等.基于AFM表征的页岩孔隙特征及其与解析气量关系[J].吉林大学学报(地球科学版),2016,46(5):1332-1341. Bai Yongqiang, Liu Mei, Yang Chunmei, et al. AFM Based Pore Characterization of Shales and Its Relation to the Analytical Gas[J]. Journal of Jilin University (Earth Science Edition),2016,46(5):1332-1341.
[15] Guo H J, Jia W L, Peng P A, et al. The Composition and Its Impact on the Methane Sorption of Lacustrine Shales from the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2014,57:509-520.
[16] Jiang F J, Chen D, Wang Z F, et al. Pore Charac-teristic Analysis of a Lacustrine Shale:A Case Study in the Ordos Basin, NW China[J]. Marine and Petroleum Geology, 2016,73:544-571.
[17] Bates R L, Jackson J A. Glossary of Geology[M]. 3nd Ed. Alexandria:American Geology Institute, 1987:1-495.
[18] Potter P E, Maynard J B, Depetris P J. Mud and Mudstones:Introduction and Overview[M]. Berlin:Springer, 2005:127-146.
[19] Barrett E P, Joyner L G, Halenda P P. The Determination of Pore Volume and Area Distributions in Porous Substances:I:Computations form Nitrogen Isotherms[J]. Journal of the American Chemical Society, 1951,73(1):373-380.
[20] Vishnyakov A, Ravikovitch P I, Neimark A V. Molecular Level Models for CO2 Sorption in Nanopores[J]. Langmuir, 1999,15:8736-8742.
[21] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.
[22] Schieber J. Shale Microfabrics and Pore Develop-ment:An Overview with Emphasis on the Importance of Depositional Processes[C]//Leckie D A,Barclay J E.Gas Shale of the Horn River Basin.Calgary:Canadan Society of Petroleum Geology, 2011:1-4.
[23] Schieber J, Southard J, Tahisen K. Accretion of Mudstone Beds from Migrating Floccule Ripples[J]. Science, 2007, 318:1760-1763.
[24] Schieber J, Southard J B. Bedload Transport of Mud by Floccule Ripples:Direct Observation of Ripple Migration Processes and Their Implications[J]. Geology, 2009, 37(6):483-486.
[25] Ohmyoung K, Andreas K K, Anthony F, et al. Permeability of Illite-Bearing Shale:Anisotropy and Effects of Clay Content and Loading[J]. Journal of Geophysical Research, 2004,109:B10205.
[26] Magara K. Compaction and Fluid Migration[M]. New York:Elsevier Scientific, 1978:1-319.
[27] 黄可可,黄思静,佟宏鹏,等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报,2009,28(4):474-482. Huang Keke, Huang Sijing, Tong Hongpeng, et al. Thermodynamic Calculation of Feldspar Dissolution and Its Significance on Research of Clastic Reservoir[J]. Geological Bulletin of China, 2009, 28(4):474-482.
[28] Richard H W, Norman H, Oxtoby P, et al. Can Oil Emplacement Prevent Quartz Cementation in Sandstones?[J]. Petroleum Geoscience, 1998, 4(2):129-137.
[1] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[2] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[3] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049.
[4] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[5] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[6] 贾艳聪, 操应长, 林畅松, 王健. 东营凹陷博兴洼陷沙四上亚段滩坝优质储层形成机理与分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 652-664.
[7] 刘海, 林承焰, 张宪国, 王宏伟, 付晓亮, 李佳. 孔店油田馆陶组辫状河储层构型及剩余油分布规律[J]. 吉林大学学报(地球科学版), 2018, 48(3): 665-677.
[8] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[9] 孙海涛, 钟大康, 李勇, 毛亚昆, 杨宪彰. 超深低孔特低渗砂岩储层的孔隙成因及控制因素——以库车坳陷克深地区巴什基奇克组为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 693-704.
[10] 刘忠宝, 杜伟, 高波, 胡宗全, 张钰莹, 吴靖, 冯动军. 层序格架中富有机质页岩发育模式及差异分布:以上扬子下寒武统为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 1-14.
[11] 蔡来星, 卢双舫, 肖国林, 王蛟, 吴志强, 郭兴伟, 侯方辉. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1): 15-28.
[12] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[13] 刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 285-297.
[14] 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306.
[15] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587 -625 .
[2] 宋明春, 李杰, 李世勇, 丁正江, 谭现锋, 张照录, 王世进. 鲁东晚中生代热隆-伸展构造及其动力学背景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 941 -964 .
[3] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965 -980 .
[4] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981 -990 .
[5] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991 -1007 .
[6] 牟敦山, 付广, 陈雪晴. 南堡1号构造馆三段断盖配置油气渗漏部位及其控藏作用[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1008 -1017 .
[7] 龚跃华, 杨胜雄, 王宏斌, 梁金强, 梁劲. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1030 -1042 .
[8] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043 -1049 .
[9] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050 -1070 .
[10] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071 -1084 .