吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1709-1719.doi: 10.13278/j.cnki.jjuese.20180295
樊文鑫1,2, 李光明2, 梁生贤2
Fan Wenxin1,2, Li Guangming2, Liang Shengxian2
摘要: 西藏扎西康铅锌多金属矿床位于喜马拉雅碰撞造山带东段的多金属成矿带内。为探明该矿床控矿构造的电性特征,笔者在矿区布设两条地球物理(音频大地电磁AMT、大地电磁MT)测线进行数据采集,并经过详细的数据处理和反演计算,得到较好的地下电性结构剖面。结合长期野外调查和物性、钻孔资料,解译出9条断裂,其中包含4条含矿断裂和4条隐伏断裂,1个深部隐伏岩体,划定2个深部有利找矿点(即Ft2和F24断裂深部)。
中图分类号:
[1] 郑有业,赵永鑫,王苹,等. 藏南金锑成矿带成矿规律研究及找矿取得重大进展[J]. 地球科学:中国地质大学学报, 2004, 29(1):44. Zheng Youye, Zhao Yongxin, Wang Ping, et al. Research on the Metallogenic Regularity of the Gold Antimony Metallogenic Belt in Southern Tibet and Major Progress in Prospecting[J]. Earth Science:Journal of China University of Geosciences, 2004, 29(1):44. [2] 戚学祥, 李天福, 孟祥金,等. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J]. 岩石学报, 2008, 24(7):1638-1648. Qi Xuexiang, Li Tianfu, Meng Xiangjin, et al.Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet and Its Constraint on Antimony-Gold Polymetallic Minerogenesis[J]. Acta Petrologica Sinica, 2008, 24(7):1638-1648. [3] 郑有业, 张立雪, 孙祥. 北喜马拉雅金锑多金属成矿带成矿作用、矿床类型与控矿因素[J]. 矿床地质, 2012,31(增刊1):1081-1082. Zheng Youye, Zhang Lixue, Sun Xiang. Metallogenesis, Deposit Types and Ore-Controlling Factors in the North Himalaya Gold-Antimony Polymetallic Metallogenic belt[J]. Mineral Deposits, 2012,31(Sup. 1):1081-1082. [4] 焦彦杰, 梁生贤, 郭镜. 西藏桑日则黑色岩系构造热液型铅锌矿定位预测研究[J]. 地球物理学进展, 2017, 32(2):634-639. Jiao Yanjie, Liang Shengxian, Guo Jing. Research on the Prediction of Tibet Sangrize Black Rock Series Positioning Structure Hydrothermal Type Pb-Zn Ore[J]. Progress in Geophysics, 2017, 32(2):634-639. [5] 李关清, 顾雪祥, 程文斌,等. 藏南扎西康锑硫盐多金属矿床成矿物质来源分析:兼论北喜马拉雅成矿带主要矿床矿质来源的差异性[J]. 地学前缘, 2014, 21(5):90-104. Li Guanqing, Gu Xuexiang, Cheng Wenbin, et al. The Analysis of Metallogenic Material Sources of the Zhaxikang Antimony (Sulfur Salts) Polymetallic Deposits in Southern Tibet:Concurrent Discussion on The Differences of the Ore Sources of Major Mineral Deposits in North Himalayan Metallogenic Belt[J]. Earth Science Frontiers, 2014, 21(5):90-104. [6] 张建芳, 郑有业, 张刚阳,等. 北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约[J]. 地球科学:中国地质大学学报, 2010, 35(6):1000-1010. Zhang Jianfang, Zheng Youye,Zhang Gangyang, et al. Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Constraints from Multi-Isotope Geochemistry[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(6):1000-1010. [7] 梁维, 郑远川, 杨竹森,等. 藏南扎西康铅锌银锑多金属矿多期多阶段成矿特征及其指示意义[J]. 岩石矿物学杂志, 2014, 33(1):64-78. Liang Wei, Zheng Yuanchuan, Yang Zhusen, et al.Multiphase and Polystage Metallogenic Process of the Zhaxikang Large-Size Pb-Zn-Ag-Sb Polymetallic Deposit in Southern Tibet and Its Implications[J]. Journal of Rock and Mineralogy, 2014, 33(1):64-78. [8] 卿成实,丁俊, 周清,等. 西藏扎西康铅锌多金属矿床原生晕特征[J]. 岩石矿物学杂志, 2014, 33(6):1113-1126. Qing Chengshi, Ding Jun, Zhou Qing, et al. Primary Halo Characteristics of the Zhaxikang Pb-Zn Polymetallic Deposit, Tibet[J]. Journal of Rock and Mineralogy, 2014, 33(6):1113-1126. [9] 王艺云, 唐菊兴, 郑文宝,等. 西藏隆子县扎西康锌多金属矿床矿石组构研究及成因探讨[J]. 地球学报, 2012, 33(4):681-692. Wang Yiyun, Tang Juxing, Zheng Wenbao, et al.A Tentative Discussion on Ore Fabric and Genesis of the Zhaxikang Zn-Polymetallic Deposit, Lhunze County, Tibet[J]. Acta Geosciences, 2012, 33(4):681-692. [10] 林彬,郑文宝,徐云峰,等.典型矿物化学特征对藏南扎西康矿床成因的启示[J]. 矿物学报, 2013,33(增刊2):794-795. Lin Bin, Zheng Wenbao, Xu Yunfeng, et al.Enlightenment of Typical Mineral Chemistry Characteristics on the Genesis of the Zhaxikang Deposit in Southern Tibet[J]. Acta Mineralogica Sinica, 2013,33(Sup.2):794-795. [11] 易继宁. 藏南扎西康式铅锌成矿作用与多元地学信息找矿预测研究[D].北京:中国地质大学(北京), 2017. Yi Jining. Zhaxikang-Type Pb-Zn Metallogenesis in Southern Tibet and Prospecting Prediction Based on Multiple Geological Information[D]. Beijing:China University of Geosciences (Beijing), 2017. [12] 李应栩, 李光明, 董随亮,等. 西藏扎西康多金属矿床成矿过程中的流体性质演化初探[J]. 矿物岩石地球化学通报, 2015, 34(3):571-582. Li Yingxu, Li Guangming, Dong Suiliang, et al. Preliminary Study on Fluid Evolution in the Ore Forming Process of the Zhaxikang Polymetallic Deposit,Tibet,China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(3):571-582. [13] 程文斌, 李关清, 顾雪祥,等. 藏南扎西康铅锌锑银多金属矿床成矿物质来源的元素地球化学与S、Pb同位素研究[J]. 矿物学报, 2013,33(增刊1):302-303. Cheng Wenbin, Li Guanqing, Gu Xuexiang, et al.Forming Minerals Source of Elemental Geochemistry and S, Pb Isotopes of the Zhaxikang Pb-Zn-Sb-Ag Polymetallic Deposit in Southern Tibet[J]. Acta Mineralogica Sinica, 2013,33(Sup. 1):302-303. [14] 郑文宝, 唐菊兴, 邢树文,等. 北喜马拉雅成矿带地质背景与主攻矿床类型思考[J]. 矿物学报, 2013,33(增刊1):374-375. Zheng Wenbao, Tang Juxing, Xing Shuwen, et al. Geological Background of the Northern Himalayan Metallogenic Belt and Considerations on the Main Deposit Types[J]. Acta Mineralogica Sinica, 2013,33(Sup. 1):374-375. [15] 董汉文, 许志琴, 孟元库,等. 藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定[J]. 岩石学报, 2017, 33(12):3741-3752. Dong Hanwen, Xu Zhiqin, Meng Yuanku, et al.Geochronology of Leucogranites in the Cuonadong Dome, Southern Tibet and Limitation of the Timing of the Southern Tibet Detachment System (STDS)[J]. Acta Petrologica Sinica, 2017, 33(12):3741-3752. [16] 李光明, 张林奎, 焦彦杰,等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4):1003-1008. Li Guangming, Zhang Linkui, Jiao Yanjie, et al. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet[J]. Mineral Deposits, 2017, 36(4):1003-1008. [17] 张志, 张林奎, 李光明,等. 北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题[J]. 地球学报, 2017, 38(5):754-766. Zhang Zhi,Zhang Linkui,Li Guangming, et al. The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes[J]. Acta Geosciences, 2017, 38(5):754-766. [18] 梁维, 杨竹森, 郑远川. 藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J]. 地质学报, 2015, 89(3):560-568. Liang Wei, Yang Zhusen, Zheng Yuanchuan. The Zhaxikang Pb-Zn P Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance[J]. Acta Geology, 2015, 89(3):560-568. [19] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255:1663-1670. [20] 尹安. 喜马拉雅-青藏高原造山带地质演化:显生宙亚洲大陆生长[J]. 地球学报, 2001, 22(3):193-230. Yin An. Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia[J]. Acta Geosciences, 2001, 22(3):193-230. [21] 孟祥金, 杨竹森, 戚学祥,等. 藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应[J]. 岩石学报, 2008, 24(7):1649-1655. Meng Xiangjin, Yang Zhusen, Qi Xuexiang, et al. Silicon-Oxygen-Hydrogen Isotopic Compositions of Zaxikang Antimony Polymetallic Deposit in Southern Tibet and Its Responses to the Ore-Controlling Structure[J]. Acta Petrologica Sinica, 2008, 24(7):1649-1655. [22] 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6):639-649. Zhang Jinjiang. A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet[J]. Geological Bulletin, 2007, 26(6):639-649. [23] 郭磊, 张进江, 张波. 北喜马拉雅然巴穹窿的构造、运动学特征、年代学及演化[J]. 自然科学进展, 2008, 18(6):640-650. Guo Lei, Zhang Jinjiang, Zhang Bo. The Structure, Kinematics, Chronology and Evolution of the Ranba Dome in the Northern Himalayas[J]. Progress in Natural Science, 2008, 18(6):640-650. [24] 董随亮, 黄勇, 李光明,等. 藏南姐纳各普金矿地质特征及成矿时代约束:对扎西康矿集区铅锌金锑成矿系统的启示[J]. 资源与产业, 2017(5):56-64. Dong Suiliang, Huang Yong, Li Guangming, et al. Geology and Mineralization Dating of Jienagepu Gold Deposit in Southern Tibet with Implications from Zhaxikang Pb-Zn-Au-Sb Metallogenic System[J]. Resources & Industry, 2017(5):56-64. [25] Hauck M L, Nelson K D, Brown L D, et al. Crustal Structure of the Himalayan Orogen at 90° East Longitude from Project Indepth Deep Reflection Profiles[J]. Tectonics, 1998, 17(4):481-500. [26] 付建刚,李光明,王跟厚,等.北喜马拉雅双穹窿的建立:来自藏南错那洞穹窿的厘定[J].中国地质,2018,45(4):783-802. Fu Jiangang, Li Guangming, Wang Genhou, et al. Establishment of the North Himalayan Double Gneiss Domes:Evidence from Field Identification of the Cuonadong Dome, South Tibet[J].Geology in China, 2018,45(4):783-802. [27] 林彬,唐菊兴,郑文宝,等.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因[J]. 岩石矿物学杂志, 2016, 35(3):391-406. Lin Bin, Tang Juxing, Zheng Wenbao, et al.Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet[J]. Journal of Rock and Mineralogy, 2016, 35(3):391-406. [28] 焦彦杰, 梁生贤, 郭镜,等. 西藏扎西康铅锌矿集区的物探方法组合试验[J]. 物探与化探, 2015, 39(2):245-252. Jiao Yanjie, Liang Shengxian, Guo Jing, et al. Comparative Research on the Combinational Test of Geophysical Methods in the Zhaxikang Lead-Zinc Ore Concentration Area, Tibet[J]. Geophysical and Geochemical Exploration, 2015, 39(2):245-252. [29] 吴建阳, 李光明, 周清,等. 藏南扎西康整装勘查区成矿体系初探[J]. 中国地质, 2015, 42(6):1674-1683. Wu Jianyang, Li Guangming, Zhou Qing, et al. A Preliminary Study of the Metallogenic System in the Zhaxikang Integrated Exploration Area, Southern Tibet[J]. Geology in China, 2015, 42(6):1674-1683. [30] 吴昊, 李光明, 张林奎,等. 扎西康矿区独立金矿体金的赋存状态研究[J]. 矿物岩石, 2017,37(4):6-13. Wu Hao, Li Guangming, Zhang Linkui, et al. Study of Gold Occurrencein in the Zhaxikang Independent Gold Orebody[J]. Mineralogy and Petrology, 2017,37(4):6-13. [31] Li G Q, Cheng W B, Zhang Y M, et al.Geochemical Characteristics and Their Geologic Significance of the Lower Jurassic Ridang Formation Host Strata from the Zhaxikang Sb-Pb-Zn-Ag Polymetallic Ore-Concentrated District, South Tibet[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2014, 33(5):598-608. [32] 樊文鑫, 李光明, 焦彦杰,等. 重磁场特征对西藏扎西康矿集区构造格架与成矿的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6):1741-1754. Fan Wenxin,Li Guangming,Jiao Yanjie, et al. Enlightenment of the Characteristics of Gravity and Magnetic Field on the Tectonic Framework and Metallogenesis of the Zhaxikang Ore-Concentrating Area, Tibe[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1741-1754. [33] 李堃, 刘飞, 刘凯, 等. 湘西-黔东地区铅锌矿床找矿模型与定量预测[J].吉林大学学报(地球科学版), 2020, 50(3):825-841. doi:10.13278/j.cnki.jjuese.20180216. Li Kun, Liu Fei, Liu Kai, et al. Prospecting Model and Quantitative Prediction of Pb-Zn Deposits in Western Hunan and Eastern Guizhou[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3):825-841. doi:10.13278/j.cnki.jjuese.20180216. [34] 付建刚,李光明,王根厚,等.西藏错那洞穹窿同构造矽卡岩特征及相关铍钨锡稀有金属矿化的成矿时代[J].吉林大学学报(地球科学版),2020,50(5):1304-1322. doi:10.13278/j.cnki.jjuese.20190285. Fu Jiangang, Li Guangming,Wang Genhou,et al. Syntectonic Skarn Characteristics and Mineralization Age of Associated Be-W-Sn Rare Metal Deposit in Cuonadong Dome, Southern Tibet, China[J].Journal of Jilin University(Earth Science Edition),2050,50(5):1304-1322. doi:10.13278/j.cnki.jjuese.20190285. [35] 战启宁,李鹏,鹿琪,等.东北地区松辽盆地和大三江盆地群基底构造电性特征[J].世界地质,2021,40(3):703-710. Zhan Qining,Li Peng,Lu Qi,et al.Electrical Characteristics of Basement Structures of Songliao Basin and Dasanjiang Basin Group in Northeast China[J]. Global Geology,2021,40(3):703-710. [36] 李洪梁,李光明,丁俊,等.藏南扎西康铅锌多金属矿床成因:硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5):1289-1303. Li Hongliang,Li Guangming,Ding Jun,et al. Genesis of Zhaxikang Pb-Zn Polymetallic Deposit in Southern Tibet:Evidence from in Situ S Isotopes of Sulfides[J]. Journal of Jilin University (Earth Science Edition),2020, 50(5):1289-1303. |
[1] | 付广, 王宏伟, 韩国猛, 浦秀刚. 源外斜坡区断裂附近油气聚集有利部位预测方法及其应用[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1700-1708. |
[2] | 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852. |
[3] | 张志立, 韩复兴, 孙文艳, 王怡, 杨安琪, 焦艳艳, 薛诗桂. 利用正演模拟实现面波衰减[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1890-1896. |
[4] | 席海银, 范月野, 王广婷, 张杨. 松辽盆地北部构造演化对砂岩型铀矿床成矿的控制作用[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1030-1041. |
[5] | 袁红旗, 魏鸣禄, 于英华. 油源断裂油气成藏期优势通道输导能力综合评判方法及其应用[J]. 吉林大学学报(地球科学版), 2021, 51(3): 694-703. |
[6] | 廖文毫, 陈冬霞, 曾溅辉, 姜文亚, 刘子驿, 朱传真, 王艺帆. 歧口凹陷埕北断阶区断砂组合样式及其对油气富集的控制作用[J]. 吉林大学学报(地球科学版), 2021, 51(2): 336-354. |
[7] | 罗永超, 李桐林, 张镕哲. 三维重力梯度局部光滑约束反演[J]. 吉林大学学报(地球科学版), 2021, 51(2): 543-551. |
[8] | 王天琪, 李静, 白利舸, 李晶, 李飞达. 基于速度分析的探地雷达阻抗介电常数反演[J]. 吉林大学学报(地球科学版), 2021, 51(2): 561-570. |
[9] | 张淑亮, 王霞, 郭文峰, 陈慧, 李惠玲. 多种地球物理场观测数据中亚失稳现象[J]. 吉林大学学报(地球科学版), 2021, 51(2): 571-583. |
[10] | 王孔伟, 路永强, 聂进, 滕明明, 王宵亮. 三峡库区仙女山和九畹溪断裂带水库地震变化规律[J]. 吉林大学学报(地球科学版), 2021, 51(2): 624-637. |
[11] | 周越, 曾昭发, 唐海燕, 张建民, 何滔. 公路勘察中滑坡体的地球物理特征与分析——以张榆线公路勘察为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 638-644. |
[12] | 孙建国. 利用Munk公式和海底反射走时反演深海水体速度:理论[J]. 吉林大学学报(地球科学版), 2021, 51(1): 1-12. |
[13] | 曹凤娟, 贾丽华, 李梦莹, 王松阳. 辽宁地区主要断裂活动性和地震危险性评估[J]. 吉林大学学报(地球科学版), 2021, 51(1): 286-295. |
[14] | 周聪, 汤井田, 原源, 李广, 肖晓, 邓居智. 强干扰区含噪电磁场的时空分布特征[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1870-1886. |
[15] | 孙立影, 杨晨, 赵海士, 常志勇. 基于极限学习机的遥感地球化学反演模型[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1929-1938. |
|