Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (2): 597-605.doi: 10.13278/j.cnki.jjuese.201702303
Previous Articles Next Articles
Weng Aihua1, Liu Jiayin1, Jia Dingyu2, Yang Yue1, Li Jianping1, Li Yabin1, Zhao Xiangyang1
CLC Number:
[1] 何继善. 可控源音频大地电磁法[M]. 长沙:中南工业大学出版社,1990. He Jishan. Controlled Source Audio-Frequency Magnetotellurics[M]. Changsha:Central South University of Techology Press,1990. [2] 尚通晓,李桐林,关艺晓,等.CSAMT一维全区反演[J].吉林大学学报(地球科学版),2007,37(增刊):24-26. Shang Tongxiao, Li Tonglin, Guan Yixiao,et al. Full-Region Inversion of 1-D CSAMT[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(Sup.):24-26. [3] 刘颖,刘予国,柳建新,等. 海洋可控源电磁场的一维反演[J]. 中国有色金属学报,2013,23(9):2551-2556. Liu Ying, Liu Yuguo, Liu Jianxin, et al. One-Dimentional Inversion of Marine Controlled-Source Eletromagnetic Fields[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9):2551-2556. [4] 何梅兴,胡祥云,陈玉萍,等. CSAMT奥克姆一维反演的应用[J]. 工程地球物理学报,2008,5(4):439-443. He Meixing, Hu Xiangyun, Chen Yuping, et al. Application of 1D Occam's Inversion to CSAMT[J]. Chinese Journal of Engineering Geophysics, 2008, 5(4):439-443. [5] 汤井田,张林成,肖晓. 基于频点CSAMT一维最小构造反演[J]. 物探化探计算技术,2011,33(6):577-582. Tang Jingtian, Zhang Lincheng, Xiao Xiao. One Dimension CSAMT Minimum Structure Inversion Based on the Frequency[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2011, 33(6):577-582. [6] 王堃鹏,曹尡,高妍,等. CSAMT自适应正则化一维全资料反演[J]. 物探化探计算技术,2013,35(5):530-533. Wang Kunpeng, Cao Hun, Gao Yan, et al. Adaptive Regularized Inversion of 1-D Full CSAMT Data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013, 35(5):530-533. [7] 陈小斌,赵国泽,唐吉,等. 大地电磁自适应正则化反演算法[J]. 地球物理学报,2005,48(4):937-946. Chen Xiaobin, Zhao Guoze, Tang Ji,et al. An Adaptive Regularized Algorithm for Magnetotelluric Data[J]. Chinese Journal of Geophysics, 2005, 48(4):937-946. [8] Nocedal J. Updating Quasi-Newton Matrices with Li-mited Storage[J]. Mathematics of Computation, 1980, 35:773-782. [9] Liu D C, Nocedal J. On the Limited Memory BFGS Methods for Large Scale Optimization[J]. Mathematical Programming, 1989, 45(1/2/3):503-528. [10] 刘利. 大规模有限内存方法的探究[D]. 南京:南京理工大学,2009. Liu Li.Studies on the Large Scale Limited Memory Method[D]. Nanjing:Nanjing University of Science and Technology, 2009. [11] 韩波,胡祥云,何展翔,等. 大地电磁反演方法的数学分类[J]. 石油地球物理勘探,2012,47(1):177-187. Han Bo, Hu Xiangyun, He Zhanxiang, et al. The Mathematical Classification of Magnetotelluric Inversion Method[J]. Oil Geophysical Prospecting, 2012, 47(1):177-187. [12] Newman G A, Boggs P T. Solution Accelerators for Large-Scale Three-Dimensional Electromagnetic Inverse Problems[J]. Inverse Problems, 2004, 20(6):151-170. [13] Haber E. Quasi-Newton Methods for Large-Scale Ele-ctromagnetic Inverse Problems[J]. Inverse Problems, 2005, 21(1):305-323. [14] Avdeev D B, Avdeeva A D. 3D Magnetotelluric Inver-sion Using a Limited-Memory Quasi-Newton Optimization[J]. Geophysics, 2009, 74(3):45-57. [15] 翁爱华,李大俊,李亚斌,等. 数据类型对三维地面可控源电磁勘探效果的影响[J]. 地球物理学报,2015,58(2):697-708. Weng Aihua, Li Dajun, Li Yabin, et al. Selection of Parameter Types in Controlled Source Electromagnetic Method[J]. Chinese Journal of Geophysics, 2015, 58(2):697-708. [16] Avdeeva A, Avdeev D. A Limited-Memory Quasi-Newton Inversion for 1D Magnetotellurics[J]. Geophysics, 2006, 71(5):G191-G196. [17] 翁爱华,刘云鹤,贾定宇,等. 初始背景模型对三维可控源反演的影响[C]//第十届中国国际地球电磁学术讨论会论文集. 南昌:中国地球物理学会,2011:223-226. Weng Aihua, Liu Yunhe, Jia Dingyu, et al. Effect of Initial Model on CSEM Inversion[C]//The 10th China International Geo-Electromagnetic Workshop. Nanchang:Chinese Geophysical Society, 2011:223-226. [18] 叶涛,陈小斌,严良俊. 大地电磁资料精细处理和二维反演解释技术研究:三:构建二维反演初始模型的印模法[J]. 地球物理学报,2013,56(10):3596-3606. Ye Tao, Chen Xiaobin, Yan Liangjun. Refined Techniques for Data Processing and Two-Dimensional Inversion in Magnetotelluric:Ⅲ:Using the Impressing Method to Construct Starting Model of 2D Magnetotelluric Inversion[J]. Chinese Journal of Geophysics, 2013, 56(10):3596-3606. [19] 陈孝雄,王友胜. 利用初始模型提高MT反演分辨率[J]. 江汉石油科技,2006,16(4):19-22. Chen Xiaoxiong, Wang Yousheng.Constructing Reasonable Starting Model to Improve the Resolution of MT Inversion[J]. Jianghan Petroleum Science and Tchnology, 2006, 16(4):19-22. [20] Das U. A Reformalism for Computing Frequency-and-Time-Domain EM Responses of a Buried, Finite-Loop[C]//Annual Meeting Abstracts. Houston:SEG, 1995:811-814. [21] Das U, Efficient H A. Computation of Apparent Resistivity Curves for Depth Profiling of a Layered Earth[J]. Geophysics, 1995, 60(6):1691-1697. [22] 刘云鹤. 三维可控源电磁法非线性共轭梯度反演研究[D].长春:吉林大学,2011. Liu Yunhe. Research on 3-D Controlled Source Electromagnetic Method Inversion Using Nonlinear Conjugate Gradients[D].Changchun:Jilin University, 2011. [23] 翁爱华,刘云鹤,贾定宇,等. 基于电场不连续边界条件的层状介质电磁格林函数计算[J]. 吉林大学学报(地球科学版),2013,43(2):603-609. Weng Aihua, Liu Yunhe, Jia Dingyu, et al. Compute Green's Function from Discontinuity of Tangential Electrical Fields Inside Source Contained Boundary[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(2):603-609. [24] 贾定宇. 基于L-BFGS方法的水平电偶极一维反演[D]. 长春:吉林大学,2012. Jia Dingyu. Inversing Horizontal Electromagnetic Dipole Databy L-BFGS Method[D]. Changchun:Jilin University, 2012. [25] 贾定宇,翁爱华,刘云鹤,等. 海洋环境中水平电偶极子电磁场特征分析[J]. 地球物理学进展,2013,28(1):517-514. Jia Dingyu, Weng Aihua, Liu Yunhe, et al. Propagation of Electromagnetic Fields from a Horizontal Electrical Dipole Buried in Ocean[J]. Progress in Geophysics, 2013, 28(1):517-514. [26] Anderson W L. Computer Program Numerical Inte-gration of Related Hankel Transforms of Orders 0 and 1 by Adaptive Digital Filtering[J]. Geophysics, 1979, 44(7):1287-1305. [27] Chave A D. Numerical Integration of Related Hankel Transforms by Quadrature and Continued Fraction Expansion[J]. Geophysics, 1983, 48(12):1671-1686. [28] 翁爱华,王雪秋. 利用数值积分提高一维模型电偶源电磁测深响应计算精度[J]. 西北地震学报,2003,25(3):193-197. Weng Aihua, Wang Xueqiu. Utilizing Direct Integration to Enhance Calculation Accuracy of 1D Electromagnetic Response for Current Dipole Source[J]. Northwestern Seismological Journal, 2003, 25(3):193-197. [29] 李廷锋. 求解大规模无约束优化问题的修正L-BFGS方法[D]. 开封:河南大学,2008. Li Tingfeng. Modified L-BFGS Methods for Large-Scale Unconstrained Optimization[D]. Kaifeng:Henan University, 2008. [30] 张舒婷,于波. 有限极大极小问题的拟牛顿法[J]. 吉林大学学报(理学版),2006,44(3):367-369. Zhang Shuting, Yu Bo. Solution of Finite Minimax Problems via Quasi-Newton Method[J]. Journal of Jilin University (Science Edition), 2006, 44(3):367-369. |
[1] | Yin Changchun, Yang Zhilong, Liu Yunhe, Zhang Bo, Qi Yanfu, Cao Xiaoyue, Qiu Changkai, Cai Jing. Characteristics of 3D DC Resistivity Response for Arbitrary Anisotropic Models Using Circular Scanning Measurement [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 872-880. |
[2] | Liu Xintong, Liu Sixin, Meng Xu, Fu Lei. Envelope Waveform Inversion of Cross-Hole Radar Without Low Frequency Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 474-482. |
[3] | Wang Yan, Lu Qi, Liu Cai, She Songsheng, Liu Sixin. Using GPR Antenna-Target Polarization Instantaneous Attribute Analysis Method to Detect LNAPL Contaminated Soil [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 491-500. |
[4] | Yin Changchun, Lu Yongchao, Liu Yunhe, Zhang Bo, Qi Yanfu, Cai Jing. Multigrid Quasi-Linear Approximation for Three-Dimensional Airborne EM Forward Modeling [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 252-260. |
[5] | Chen Hui, Yin Min, Yin Changchun, Deng Juzhi. Three-Dimensional Magnetotelluric Modelling Using Aggregation-Based Algebraic Multigrid Method [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 261-270. |
[6] | Li Dajun, Weng Aihua, Yang Yue, Li Sirui, Li Jianping, Li Shiwen. Three-Dimension Forward Modeling and Characteristics for Surface-Borehole Transient Electromagnetic by Using Staggered-Grid Finite Difference Method [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1552-1561. |
[7] | Li Guang, Qu Xiaodong, Huang Ling, Fang Guangyou. Geometric Error Analysis of Frequency-Domain Magnetic Dipole-Dipole System [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1255-1267. |
[8] | Liu Yongliang, Li Tonglin, Zhu Cheng, Guan Zhenwei, Su Xiaobo. Precision Analysis of 3D Electromagnetic Field Numerical Modeling Based on Quasi-Linear Integral Equation Method [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1268-1277. |
[9] | Chen Shuai, Li Tonglin, Zhang Rongzhe. 1-D Occam Inversion of Transient Electromagnetic in Consideration of Induced Polarization Effect [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1278-1285. |
[10] | Zeng Zhaofa, Li Wenben, Xi Jianjun, Huang Ling, Wang Zhejiang. Inverse Direction Imaging Method of Array Type GPR Based on DOA Estimation [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1308-1318. |
[11] | Cai Jianhua, Xiao Xiao. De-Noising of Magnetotelluric Signal in the Ore Concentration Area Based on Combination Filter [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 874-883. |
[12] | Xi Jianjun, Zeng Zhaofa, Huang Ling, Cui Dandan, Wang Zhejiang. Characteristics of the Signal Polarization Field in Array Type Ground Penetrating Radar [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 633-644. |
[13] | Luo Tianya, Xiong Bin, Cai Hongzhu, Chen Xin, Liu Yunlong, Lan Huaikang, Li Zuqiang, Liang Zhuo. Magnetotelluric Responses of Two-Dimensional Complex Conductivity Structures [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 215-223. |
[14] | Li Shiwen, Yin Changchun, Weng Aihua. Full-Time Inversion of Time-Domain AEM Data for Resistivity and Magnetic Permeability [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1830-1836. |
[15] | Han Song, Liu Guoxing, Han Jiangtao. Deep Electrical Structure of Jinxian-Zherong Magnetotelluric Profile in South China [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1837-1846. |
|