Journal of Jilin University(Earth Science Edition)

Previous Articles     Next Articles

Fracture Formation Mechanism of Volcanic Rocks in Xujiaweizi Fault Depression of Songliao Basin

Chen Shumin1,Jiang Chuanjin1,Liu Li2,Chu Lilan1,Pei Mingbo1   

  1. 1.Daqing Oil Field Co.,Ltd. Company Exploration & Development Institute,Daqing163712 ,Heilongjiang, China;
    2. Strategic Research Center of Oil and Gas Resources Ministry of Land & Resources,Beijing100034,China
  • Received:2014-02-21 Online:2014-11-26 Published:2014-11-26

Abstract:

Xujiaweizi fault depression is a Late Jurassic-Early Cretaceous deep half-graben type extensional fault depression in northern Songliao basin, and volcanic rocks developed. The article is mainly based on macro and micro studies on outcrops, cores and thin sections. Tectonic fractures and corrosion fractures are well developed, and show apparent regularity. Most of primary fractures are transformed into secondary fractures by later tectonic stress or dissolution. Fractures formation are controlled by several factors, for instance, regional tectonic stress and its evolution, structure, lithology, lithofacies, dissolution, weathering. Among these, tectonic stress field evolution, lithology and lithofacies, weathering and dissolution are dominant factors. Most of tectonic fractures are characterized by high angle, tensional and torsional, part filled or unfilled, multi-period, and multi-directional, which is the results of the superposition of various geological and tectonic role from Late Jurassic to Neogene. Local development of fractures are controlled by local stress field distribution. In general, since obvious stress concentration, fault systems are fracture development zone. Local stress are especially concentrated in the hanging wall of normal fault, the end of normal and reverse fault, and anticline axis, where tectonic fractures are abundant. The effective hydrocarbon reservoirs in volcanic rocks are controlled by combination of primary pore spaces and structural fractures. The fracture development shows vertical cyclicity because of multi-eruption, weathering and unconformable surface. The dissolution fractures develop near unconformity. In plane, the fractures mainly developed in fault-concentrated area, faults intersection, anticline and syncline. Pores and fractures is the most developed in explosive and effusive facies, especially in effusive rhyolite. The rhyolite is the most advantageous reservoir and high yield gas production area.

Key words: volcanic rocks, fracture, tectonic stress field, volcanic facies, formation mechanism, Xujiaweizi fault depression, Songliao basin

CLC Number: 

  • P618.13
[1] Liao Dongliang, Zeng Yijin. Establishment of Formation Shear Fracture Model by Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1268-1276.
[2] Deng Xinhui, Liu Cai, Guo Zhiqi, Liu Xiwu, Liu Yuwei. Full Wave Field Seismic Response Simulation and Analysis of Anisotropic Shale Reservoir in Luojia Area of Jiyang Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1231-1243.
[3] Zhang Bing, Guo Zhiqi, Xu Cong, Liu Cai, Liu Xiwu, Liu Yuwei. Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1244-1252.
[4] Zhang Guanjie, Fang Shi, Zhang Xinrong, Gao Xianchao, Shen Wei. Research Status of Water-Transgressive Sand [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 626-639.
[5] Jia Yancong, Cao Yingchang, Lin Changsong, Wang Jian. Formation Mechanism and Distribution of High-Quality Reservoirs for Beach-Bar Sandstones in Upper Part of Es4 in Boxing Sag, Dongying Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 652-664.
[6] Li Ang, Ju Linbo, Zhang Liyan. Relationship Between Hydrocarbon Accumulation and Paleo-Mesozoic Tectonic Evolution Characteristics of Gucheng Lower Uplift in Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 545-555.
[7] Ma Guoqing, Meng Qingfa, Huang Danian. Structure Identification by Gravity Anomaly in Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 507-516.
[8] Zhu Xiaoying, Yang Hai, Kuang Xingtao, Peng Weiwei, Zhang Hongrui. Characteristics of Fault Structures in East Kunlun-Altyn Tagh Based on High-Precision Aeromagnetic Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 461-473.
[9] Pan Baozhi, Liu Wenbin, Zhang Lihua, Guo Yuhang, Aruhan. A Method for Improving Accuracy of Reservoir Fracture Identification [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 298-306.
[10] Cai Laixing, Lu Shuangfang, Xiao Guolin, Wang Jiao, Wu Zhiqiang, Guo Xingwei, Hou Fanghui. Controlling Action of Space-Time Coupling Relationship Between High-Quality Source Rocks and High-Quality Reservoirs: Contrasting Accumulation Conditions of Tight Oil in the Southern Songliao Basin with Tight Gas in the Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 15-28.
[11] Cai Laixing, Lu Shuangfang, Zhang Xunhua, Xiao Guolin, Wu Zhiqiang, Huang Wenbiao. Establishment of Evaluation Scheme of Tight Sandstone Reservoirs Based on Pore Throat:A Case Study on the 4th Member of Quantou Formation at Central Depression of Southern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1654-1667.
[12] Zhang Huanxu, Chen Shijia, Lu Jungang, Liu Chaowei, Chen Juan, Li Yong, Xu Kun. Migration of Oil in Tight Sandstones:Discussion from the Dynamics [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1341-1351.
[13] Wang Shijie, Xu Zhongyuan, Dong Xiaojie, Du Yang, Cui Weilong, Wang Yang. Permian Tectonic Evolution of the Middle Section of Northern Margin of the North China Plate:Constraints from Zircon U-Pb Geochronology and Geochemistry of the Volcanic Rocks [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1442-1457.
[14] Li Peng, Su Shengrui, Ma Chi, Huang Huang, Xu Jiwei. Formation Mechanism of Landslides with Accumulation Layer-Bedrock Contact Surface:Taking Zushimiao Landslide as an Example [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1471-1479.
[15] Liu Chen, Sun Jinggui, Qiu Dianming, Gu Alei, Han Jilong, Sun Fanting, Yang Mei, Feng Yangyang. Genesis and Geological Significance of Mesozoic Volcanic Rocks in Xiaomoerke, Northern Slope of Greater Khingan Range: Hf Isotopic Geochemistry and Zircon U-Pb Chronology [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1138-1158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!