Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (1): 34-47.doi: 10.13278/j.cnki.jjuese.201701104

Previous Articles     Next Articles

Characteristics of Main Ordovician Reservoir Rocks in Block Two of Tahe Oilfield

Fan Zhuoying, Lin Chengyan, Ju Chuanxue, Han Changcheng, Xiong Chenwei   

  1. College of Geosciences in China University of Petroleum. Qingdao 266580, Shandong, China
  • Received:2016-04-05 Online:2017-01-26 Published:2017-01-26
  • Supported by:
    Supported by National Natural Science Foundation (41404086), National Science and Technology Major Project(2011ZX05020-008), National Natural Science Foundation of Shandong Province(ZR2014DQ007) and National Science and Technology Major Project of CNPC (2012E-34-12)

Abstract: The main types of Ordovician carbonate reservoirs consist of fracture-cavity type, high energy pore type, and pore-fracture type by pressure solution in block two of Tahe oilfield. Based on core, thin section, seismic, well logging, and well test data, we analyzed characteristics and distribution of each type of reservoir. There are 10 types of reservoir spaces, including dissolved pore, eroded fracture, tectonic fracture, inter particle pore, intra particle pore, moldic pore, intercrystal pore, stylolite, and micro-fracture in carbonate reservoirs. In fact, these reservoirs are all evolved from grainstones formed in high energy sedimentary belts. Grainstones evolved into secondary micro-pore dominating reservoirs by compaction and cementation, and they also formed pressolution pore-fracture reservoirs by pressolution and dolomitization, which developed dissolved fracture-cavity reservoirs. Affected by distribution of sediment facies and diagenesis, it develop grainstone and cloudy limestone in the south. Due to strong weathering and denudation in the north, it formed reservoirs with large dissolution cavities. With developing of ancient rivers at eastern slope, dissolution pores and cavities developed along the ancient river. Controlled by deep faults in the west, dissolution pores and cavities vertically developed along the fracture.

Key words: carbonate, reservoir, Tahe oilfield, Ordovician

CLC Number: 

  • P618.13
[1] Graham Wall B R, Girbacca R,Mesonjesi A, et al. Evolution of Facture and Fault Controlled Fluid Pathways in Carbonates of the Albanides Fold-Thrust Belt[J]. AAPG Bulletin, 2006, 90(8):1227-1249.
[2] 苏劲,张水昌,杨海军,等.断裂系统对碳酸盐岩有效储层的控制及其成藏规律[J].石油学报,2010, 31(2):196-203. Su Jin, Zhang Shuichang,Yang Haijun,et al. Control of Fault System to Formation of Effective Carbonate Reservoir and the Rules of Petroleum Accumulation[J]. Acta Petrolei Sinica, 2010, 31(2):196-203.
[3] Jamison W R. Quantitative Evaluation of Fractures on Monks Hood:Anticline, a Detachment Fold in the Foothills of Western Canada[J].AAPG Bulletin, 1997, 81(7):1110-1132.
[4] Nelson R A, Moldovanyi E P, Matcek C C, et al. Production Characteristics of the Fractured Reservoirs of the La Paz Field, Maracaibo Basin,Venezuela[J].AAPG Bulletin, 2000,84(11):1791-1809.
[5] Nelson R A. Geologic Analysis of Naturally Fractured Reservoirs[M].Houston:Gulf Professional Publishing House,2001:332.
[6] 张宝民,刘静江.中国岩溶储集层分类与特征及相关的理论问题[J].石油勘探与开发, 2009,36(1):12-29. Zhang Baomin,Liu Jingjiang. Classification and Characteristics of Karst Reservoirs in China and Related Theories[J].Petroleum Exploration and Development,2009,36(1):12-29.
[7] 鲁新便.岩溶缝洞型碳酸盐岩储集层的非均质性[J].新疆石油地质, 2003,24(4):360-362. Lu Xinbian. Heterogeneity of Karst-Vuggy Carbonate Reservoir Rocks[J]. Xinjiang Petroleum Geology, 2003,24(4):360-362.
[8] 李阳.塔河油田奥陶系碳酸盐岩溶洞型储集体识别及定量表征[J].中国石油大学学报(自然科学版),2012,36(1):1-7. Li Yang.Ordovician Carbonate Fracture-Cavity Reservoirs Identification and Quantitative Characteri-zation in Tahe Oilfield[J].Journal of China University of Petroleum,2012,36(1):1-7.
[9] 金强,田飞.塔河油田岩溶型碳酸盐岩缝洞结构研究[J].中国石油大学学报(自然科学版),2013,37(5):15-20. Jin Qiang,Tian Fei.Investigation of Fracture-Cave Constructions of Karsted Carbonate Reservoirs of Ordovician in Tahe Oilfield, Tarim Basin[J].Journal of China University of Petroleum,2013,37(5):15-20.
[10] 金民东,曾伟,谭秀成,等.四川磨溪-高石梯地区龙王庙组滩控岩溶型储集层特征及控制因素[J].石油勘探与开发,2014,41(6):650-660. Jin Mindong, Zeng Wei, Tan Xiucheng, et al. Characteristics and Controlling Factors of Beach-Controlled Karst Reservoirs in Cambrian Longwangmiao Formation, Moxi-Gaoshiti Area, Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2014,41(6):650-660.
[11] 顾家裕,张兴阳,罗平,等. 塔里木盆地奥陶系台地边缘生物礁、滩发育特征[J].石油与天然气地质,2005,26(3):277-282. Gu Jiayu, Zhang Xingyang, Luo Ping, et al. Development Characteristics of Organic Reef-Bank Complex on Ordovician Carbonate Platform Margin in Tarim Basin[J].Oil & Gas Geology,2005, 26(3):277-282.
[12] 陈荣坤.埋藏环境下碳酸盐岩建设性成岩作用类型、特征及其意义[J].现代地质, 1993, 7(1):40-49. Chen Rongkun. Types and Characteristics of Carbonate Rock Constructive Diagenesis in Burial Environment[J]. Geoscience, 1993, 7(1):40-49.
[13] 牛永斌,钟建华,王培俊,等.成岩作用对塔河油田二区奥陶系碳酸盐岩储集空间发育的影响[J].中国石油大学学报(自然科学版),2010,34(6):13-19. Niu Yongbin, Zhong Jianhua,Wang Peijun,et al. Effect of Diagenesis on Accumulate Capability of Ordovician Carbonate Rock in Block 2 of Tahe Oil Field[J]. Journal of China University of Petroleum, 2010,34(6):13-19.
[14] 毛毳,钟建华,李勇,等.塔河油田奥陶系碳酸盐岩基质孔缝型储集体特征[J].石油勘探与开发,2014,41(6):1-8. Mao Cui, Zhong Jianhua,Li Yong,et al. Ordovician Carbonate Rock Matrix Fractured-Porous Reservoirs in Tahe Oilfield[J]. Petroleum Exploration and Development, 2014,41(6):1-8.
[15] 张月巧,贾进斗,靳久强,等.塔东地区寒武-奥陶系沉积相与沉积演化模式[J].天然气地球科学,2007,18(2):229-234. Zhang Yueqiao,Jia Jindou,Jin Jiuqiang,et al. Characteristics of Cambrian-Ordovician Sedimentary Facies in Tadong Region and Its Sedimentary Model[J]. Natural Gas Geoscience,2007,18(2):229-234.
[16] 金之钧,张一伟,陈书平.塔里木盆地构造-沉积波动过程[J].中国科学:D辑:地球科学,2005,35(6):530-539. Jin Zhijun, Zhang Yiwei, Chen Shuping. Structure-Sediment Wave Process in Tarim Basin[J]. Science in China:Series D:Earth Sciences,2005,35(6):530-539.
[17] 俞仁连,傅恒.构造运动对塔河油田奥陶系碳酸盐岩的影响[J].天然气勘探与开发, 2006, 29(2):1-6. Yu Renlian, Fu Hen. Influence of Tectonic Movement on Ordovician Carbonates of Tahe Oilfield[J]. Naturalgas Exploration & Development, 2006, 29(2):1-6.
[18] Lønøy A. Making Sense of Carbonate Pore Systems[J]. AAPG Bulletin, 2006, 90(9):1381-1405.
[19] 陈红汉,吴悠,丰勇,等.塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质, 2014, 35(6):806-819. Chen Honghan,Wu You, Feng Yong, et al. Timing and Chronology of Hydrocarbon Charging in the Ordovican of Tahe Oilfield,Tarim Basin,NW China[J].Oil and Gas Geology, 2014, 35(6):806-819.
[20] 钟建华,孔凡亮,李阳,等.塔河油田四区奥陶系碳酸盐岩油藏中的缝合线研究[J].地质论评, 2010, 56(6):841-850. Zhong Jianhua, Kong Fanliang, Li Yang,et al. Research of Stylolites in Ordovician Carbonate Eservoirs of the 4th Block,Tahe Oilfield,Tarim Basin[J].Geological Review, 2010, 56(6):841-850.
[21] Moore C H C, Druckman Y. Burial Diagenesis and Porosity Evolution, Upper Jurassic Smackover, Arkansas and Louisiana[J]. Petroleum Geologists Bulletin, 1981, 65:597-628.
[22] 强子同.碳酸盐岩储层地质学[M].东营:石油大学出版社, 1998:18-48. Qiang Zitong. Carbonate Reservoir Geology[M]. Dongying:University of Petroleum Press, 1998:18-48.
[23] 赵文智,沈安江,潘文庆,等.碳酸盐岩岩溶储层类型研究及对勘探的指导意义:以塔里木盆地岩溶储层为例[J].岩石学报,2013,32(9):3213-3222. Zhao Wenzhi, Shen Anjiang, Pan Wenqing, et al. A Research on Carbonate Karst Reservoirs Classification and Its Implication on Hydrocarbon Exploration:Cases Studies from Tarim Basin[J].Acta Petrologica Sinica, 2013, 32(9):3213-3222.
[24] 鲁新便,何成江,邓光校,等.塔河油田奥陶系油藏喀斯特古河道发育特征描述[J].石油实验地质, 2014, 36(3):268-274. Lu Xinbian, He Chengjiang, Deng Guangxiao, et al. Development Festures of Karst Anciend River System in Ordovician Resevoirs,Tahe Oil Field[J].Petroleum Geology & Experiment, 2014, 36(3):268-274.
[25] Blenkinsop T G. Deformation Microstructures and Mechanisms in Minerals and Rocks[M]. Kluwer:Kluwer Academic Publisher,2000:1-80.
[26] Beach A,Welborn A I, Brockbank P, et al. Reservoir Damage Around Faults:Outcrop Examples from the Suez Rift[J].Petroleum Geoscience,1999,5:109-116.
[27] Wibberley C A J, Petit J P, Rives T. Mechanics of Cataclastic ‘Deformation Band’ Faulting in High-Porosity Sandstone,Provence[J].Science,2000,331:419-425.
[28] Knipe R J, Jones G, Fisher Q J. Fault Sealingand Fluid Flow in Hydrocarbon Reservoirs[M]. London:The Geological Society,1998:147.
[29] 林承焰,曹铮,任丽华,等.松辽盆地南部大情字井向斜区葡萄花油层石油富集规律及成藏模式[J].吉林大学学报(地球科学版),2016,46(6):1596-1610. Lin Chengyan,Cao Zheng,Ren Lihua, et al.Oil Enrichment Regularity and Accumulation Modes of Putaohua Reservoir in Daqingzijing Syncline Area,Southern Songliao Basin[J].Journal of Jilin University (Earth Science Edition),2016,46(6):1596-1610.
[30] 巨银娟,张小莉,张永庶,等.柴达木盆地昆北地区基岩储层裂缝特征[J].吉林大学学报(地球科学版),2016,46(6):1660-1671. Ju Yinjuan, Zhang Xiaoli, Zhang Yongshu, et al.Fracture Characteristics of Bedrock Reservoir in the North-Kunlin Faults Zone,Qaidam Basin[J].Journal of Jilin University (Earth Science Edition),2016, 46(6):1660-1671.
[31] 吕修祥,杨宁,周新源,等.塔里木盆地断裂活动对奥陶系碳酸盐岩储层的影响[J].中国科学:D辑:地球科学,2008,38(增刊1).48-54. Lü Xiuxiang, Yang Ning, Zhou Xinyuan, et al. Effects of Fractures on the Ordovician Carbonate Reservoir in Tarim Basin[J]. Science in China:Series D:Earth Sciences, 2008, 38(Sup.1):48-54.
[1] Lin Miruo, Cao Yingchang, Xi Kelai, Wang Jian, Chen Hong, Wu Junjun. Characteristics and Controlling Factors of Permian Reservoirs in Eastern Slope of Fukang Sag [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 991-1007.
[2] Zhao Qianping, Zhang Lixia, Yin Jintao, Yu Yuxi, Jiang Chengfu, Wang Hui, Gao Chao. Pore Structure and Physical Characteristics of Shale Reservoir Interbedded with Silty Layers: An Example from Zhangjiatan Lacustrine Shale [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1018-1029.
[3] Deng Xinhui, Liu Cai, Guo Zhiqi, Liu Xiwu, Liu Yuwei. Full Wave Field Seismic Response Simulation and Analysis of Anisotropic Shale Reservoir in Luojia Area of Jiyang Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1231-1243.
[4] Zhang Bing, Guo Zhiqi, Xu Cong, Liu Cai, Liu Xiwu, Liu Yuwei. Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1244-1252.
[5] Liu Hai, Lin Chengyan, Zhang Xianguo, Wang Hongwei, Fu Xiaoliang, Li Jia. Reservoir Architecture and Remaining Oil Distribution in Braided River of Guantao Formation, Kongdian Oilfield [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 665-677.
[6] Li Wenqiang, Guo Wei, Sun Shouliang, Yang Xuhai, Liu Shuai, Hou Xiaoyu. Research on Hydrocarbon Accumulation Periods of Palaeozoic Reservoirs in Bachu-Maigaiti Area of Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 640-651.
[7] Jia Yancong, Cao Yingchang, Lin Changsong, Wang Jian. Formation Mechanism and Distribution of High-Quality Reservoirs for Beach-Bar Sandstones in Upper Part of Es4 in Boxing Sag, Dongying Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 652-664.
[8] Feng Xiaolong, Ao Weihua, Tang Xuan. Characteristics of Pore Development and Its Main Controlling Factors of Continental Shale Gas Reservoirs: A Case Study of Chang 7 Member in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 678-692.
[9] Sun Haitao, Zhong Dakang, Li Yong, Mao Yakun, Yang Xianzhang. Porosity Origin and Controlling Factors of Ultra-Deep, Low Porosity and Ultra-Low Permeability Sandstone Reservoirs: A Case Study of Bashijiqike Formation in Keshen Area of Kuqa Depression, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 693-704.
[10] Cai Laixing, Lu Shuangfang, Xiao Guolin, Wang Jiao, Wu Zhiqiang, Guo Xingwei, Hou Fanghui. Controlling Action of Space-Time Coupling Relationship Between High-Quality Source Rocks and High-Quality Reservoirs: Contrasting Accumulation Conditions of Tight Oil in the Southern Songliao Basin with Tight Gas in the Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 15-28.
[11] Liu Zongli, Wang Zhuwen, Liu Jinghua, Zhao Shuqin, Ou Weiming. Logging Response Characteristics and Reservoir Significance of Volcanic Rocks in the Eastern Sag of Liaohe Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 285-297.
[12] Pan Baozhi, Liu Wenbin, Zhang Lihua, Guo Yuhang, Aruhan. A Method for Improving Accuracy of Reservoir Fracture Identification [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 298-306.
[13] Cai Laixing, Lu Shuangfang, Zhang Xunhua, Xiao Guolin, Wu Zhiqiang, Huang Wenbiao. Establishment of Evaluation Scheme of Tight Sandstone Reservoirs Based on Pore Throat:A Case Study on the 4th Member of Quantou Formation at Central Depression of Southern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1654-1667.
[14] Yang Dexiang, Fu Guang, Sun Tongwen, Li Xiwei, Jiang Haiyan, Liu Binying. Comprehensive Evaluation Method and Its Application of Oil Carrying Capacity Through Dominant Channel of Oil Source Fault [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1678-1686.
[15] Zhang Bing, Yang Kai, Jia Xueli, Zheng Rongcai, Guo Qiang, Wen Huaguo. Sedimentary-Diagenetic Systems of Dolomite Reservoir in Changxing Formation in the Eastern Kaijiang-Liangping Intraplatform Trough [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1631-1641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!