吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (2): 394-399.doi: 10.13229/j.cnki.jdxbgxb.20220338

• 材料科学与工程 • 上一篇    

碳纳米管掺杂3YSZ陶瓷的低温闪烧

杨悦(),赵培雷,马天惠,贾剑明   

  1. 长春工业大学 材料科学与工程学院,长春 130012
  • 收稿日期:2022-03-29 出版日期:2024-02-01 发布日期:2024-03-29
  • 作者简介:杨悦(1974-),女,教授,博士.研究方向:新型导电陶瓷制备及性能.E-mail:yangyue@ccut.edu.cn
  • 基金资助:
    吉林省发改委项目(2020C029-3)

Flash sintering of 3YSZ doping with CNT at low temperature

Yue YANG(),Pei-lei ZHAO,Tian-hui MA,Jian-ming JIA   

  1. School of Materials Science and Engineering,Changchun University of Technology,Changchun 130012,China
  • Received:2022-03-29 Online:2024-02-01 Published:2024-03-29

摘要:

以3 mol%氧化钇稳定氧化锆(3YSZ)粉末为基材通过添加导电相-碳纳米管(CNT),同时辅助交流电场和压力,在200 ℃进行复合材料的低温烧结。主要探讨了CNT含量对烧结材料的物相组成、微观组织形貌以及离子电导率的影响规律。结果表明:在此温度下材料烧结致密,相组成均为稳定相t-ZrO2;CNT含量为2%时,离子电导率为0.20 μs/cm;当CNT含量为3%时,离子电导率达到0.83 μs/cm,当CNT含量增加到4%时,材料导电性能增强,闪烧起始电压降低,但由于局部过度烧结导致离子电导率下降为0.6 μs/cm。同时,3YSZ-4%CNT复合材料可实现室温烧结。

关键词: 材料学, 闪烧技术, 碳纳米管, 烧结温度, 离子电导率

Abstract:

In the present study, 3 mol% Yttria-Stabilized Zirconia (3YSZ) powder was used as the base material doping with conductive phase-carbon nanotubes (CNT) to conduct low-temperature sintering at 200 ℃, and simultaneously assisting AC electric field and pressure. The effects of carbon nanotube concentration on the phase composition, microscopic morphology and ionic conductivity of sintered materials were mainly discussed. The results showed that the composites were sintered uniformly and densely at this temperature, and the ionic conductivity was 0.20 μs/cm when the concentration of carbon nanotubes was 2%;When the concentration of carbon nanotubes was 3%, the ionic conductivity 0.83 μs/cm could be reached;When the concentration of carbon nanotubes was increased to 4%, the ability of the material to withstand electric field strength and current density was further improved, and the initial voltage of flash sintering was reduced, but the conductivity was 0.6 μs/cm at this time, meantime, the material could be sintered at room temperature.

Key words: materials science, flash sinter, carbon nanotubes, sintering temperature, ionic conductivity

中图分类号: 

  • TB34

图1

闪烧实验设备示意图"

图2

CNT掺杂3YSZ材料的FS过程示意图"

图3

不同CNT含量的样品闪烧功率曲线以及对应黑体辐射温度曲线图"

图4

闪烧后3YSZ-2%CNT、3YSZ-3%CNT、3YSZ-4%CNT材料XRD图谱"

图5

不同CNT含量样品烧结后断口处微观形貌图"

图6

不同CNT含量样品的阻抗谱"

表1

不同CNT含量的3YSZ样品离子电导率及其激活能"

项目FS-2%-150FS-3%-150FS-3%-300FS-4%-300FS-4%-室温
Conductivity/μs·cm-10.110.200.830.600.24
ΔEσ/eV1.191.281.071.171.18

图7

不同含量CNT样品对应电导率的Arrhenius曲线图"

1 Guan S H, Liu Z P. Theoretical aspects on doped-zirconia for solid oxide fuel cells: from structure to conductivity[J]. Chinese Journal of Chemical Physics, 2021, 34 (2): 125-136.
2 Lv Y M, Xie J T, Wang D B, et al. Review of cell performance in solid oxide fuel cells[J]. Journal of Materials Science, 2021, 55(17): 7184-7207.
3 杨悦, 李雪, 徐晓丹. Ti-B-C-N粉末烧结的微观组织及其性能[J].吉林大学学报:工学版, 2017, 47(2): 552-556.
Yang Yue, Li Xue, Xu Xiao-dan. Microstructure and properties of sintered Ti-B-C-N powder[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 552-556.
4 Cologna M, Rashkova B, Raj R. Flash sintering of nanograin zirconia in <5 s at 850 ℃[J]. Journal of the American Ceramic Society, 2010, 93 (11): 3556-3559.
5 苏兴华, 吴亚娟, 安盖, 等. 陶瓷材料闪烧机理研究进展[J]. 硅酸盐学报, 2020, 48 (12): 1872-1879.
Su Xing-hua, Wu Ya-juan, An Gai, et al. Advances in mechanisms for flash sintering of ceramic materials[J]. Journal of The Chinese Ceramic Society, 2020, 48(12): 1872-1879.
6 Liu J M, Li X, Wang X L, et al. Alternating current field flash sintering 99% relative density ZnO ceramics at room temperature[J]. Scripta Materialia, 2020, 176: 28-31.
7 Xiao W W, Ni N, Fan X H, et al. Ambient flash sintering of reduced graphene oxide/zirconia composites: role of reduced graphene oxide[J]. Journal of Materials Science & Technology, 2021, 60: 70-76.
8 Muccillo R, Ferlauto A S, Muccillo E N S. Flash sintering samaria-doped ceria–carbon nanotube composites[J]. Ceramics, 2019, 2(1): 64-73.
9 Du Y, Stevenson A J, Vernat D, et al. Estimating joule heating and ionic conductivity during flash sintering of 8YSZ[J]. Journal of the European Ceramic Society, 2016, 36(3): 749-759.
10 刘金铃,刘佃光, 王一光, 等. 氧化物陶瓷闪烧机理及其应用研究进展[J]. 无机材料学报, 2022, 37(5): 473-480.
Liu Jin-ling, Liu Dian-guang, Wang Yi-guang, et al. Research progress on the flash sintering mechanism and application of oxide ceramics[J]. Journal of Inorganic Materials, 2022, 37(5): 1-8.
11 杨悦, 马天惠, 赵培雷, 等. 快速热压烧结制备立方相Li7La3Zr2O12固态电解质[J]. 吉林大学学报: 工学版, 2023, 53(8): 2272-2276.
Yang Yue, Ma Tian-hui, Zhao Pei-lei,et al. Preparation of cubic Li7La3Zr2O12 solid electrolyte by fast hot-press sintering[J]. Journal of Jilin University (Engineering and Technology Edition),2023,53(8): 2272-2276.
[1] 杨悦,马天惠,赵培雷,贾剑明. 快速热压烧结制备立方相Li7La3Zr2O12固态电解质[J]. 吉林大学学报(工学版), 2023, 53(8): 2272-2276.
[2] 张晓明,王洪艳,李俊锋 . 改性MWNTs/纳米HA/PLA骨修复材料的制备[J]. 吉林大学学报(工学版), 2008, 38(04): 844-847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!