吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3192-3198.doi: 10.13229/j.cnki.jdxbgxb.20230631
• 材料科学与工程 • 上一篇
Xing-lin ZHOU1,2,3(
),Yang LIU1,2,3,Lu LIU1,2,3
摘要:
由于沥青混凝土内部结构极其复杂,会在不同疲劳阶段呈现出不同的变化特征,为了解沥青混凝土的疲劳损伤演化过程,在CT三维重构技术的基础上对其展开研究。对沥青混凝土展开疲劳实验,得到不同疲劳阶段的CT扫描图像和三维重构图像;利用差分盒维数法计算CT三维重构图像分形维数,得到疲劳损伤次数与分形维之数间的关系;利用Miner线性疲劳损伤模型重新定义沥青混凝土的损伤变量,得到疲劳损伤演化过程呈线性变化的结论。通过构造环氧沥青混凝土试件展开实验测试,结果表明:本文方法能准确计算出沥青混凝土压缩位移和裂缝体积与疲劳损伤之间的关系,推理得到沥青混凝土的疲劳损伤演化过程。
中图分类号:
| 1 | 赵国良, 董成, 王雷. 荷载多变的混凝土弯曲疲劳数值仿真[J]. 计算机仿真, 2022, 39(9): 343-347. |
| Zhao Guo-liang, Dong Cheng, Wang Lei. Numericalsimulation of bending fatigue of concrete with variableload[J]. Computer Simulation, 2022, 39(9): 343-347. | |
| 2 | 陈双, 莫忧, 胡建. 高温尾喷作用下水泥混凝土道面的疲劳损伤[J]. 西安建筑科技大学学报: 自然科学版, 2021, 53(2): 194-201. |
| Chen Shuang, Mo You, Hu Jian. Fatigue damage of cement concrete pavement under high temperature tail spray[J]. Journal of Xi'an University of Architecture and Technology(Natural Science Edition), 2021, 53(2): 194-201. | |
| 3 | 马海鹏, 余沛. 高寒高海拔地区玄武岩纤维沥青混凝土损伤自愈合性能分析[J]. 硅酸盐通报, 2021, 40(8): 2803-2810. |
| Ma Hai-peng, Yu Pei. Analysis of damage self-healing performance of basalt fiber asphalt concrete at high-cold and high-altitude area[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2803-2810. | |
| 4 | 杨荣周, 郑强强, 陈佩圆, 等. 分级等荷循环受压下橡胶水泥砂浆的疲劳损伤演化[J]. 建筑材料学报, 2021, 24(5): 961-969. |
| Yang Rong-zhou, Zheng Qiang-qiang, Chen Pei-yuan, et al. Fatigue and damage evolution characteristics of rubber cement mortar under graded constant load cyclic compression[J]. Journal of Building Materials, 2021, 24(5): 961-969. | |
| 5 | 张培, 任青文. 循环荷载下混凝土疲劳损伤累积分析的颗粒流黏结退化模型[J]. 工程力学, 2021, 38(S1): 100-109. |
| Zhang Pei, Ren Qing-wen. Particle bond-degradation model for cumulative damage analysis of concrete under cyclic loading[J]. Engineering Mechanics, 2021, 38(S1): 100-109. | |
| 6 | 许见超, 吴洁琼, 刁波, 等. 配筋率和氯腐蚀环境对钢筋混凝土梁疲劳损伤累积的影响[J]. 铁道建筑, 2021, 61(2): 16-19. |
| Xu Jian-chao, Wu Jie-qiong, Diao Bo, et al. Impact of reinforcement ratio and chloride-corrosion environment on fatigue damage accumulation of reinforced concrete beams[J]. Railway Engineering 2021, 61(2): 16-19. | |
| 7 | 丁兆东, 刘剑锋. 基于疲劳损伤模型的钢筋混凝土梁疲劳可靠度分析[J]. 合肥工业大学学报: 自然科学版, 2022, 45(7): 931-938. |
| Ding Zhao-dong, Liu Jian-feng. Fatigue reliability analysis of reinforced concrete beams based on fatigue damage model[J]. Journal of Hefei University of Technology(Natural Science Edition), 2022, 45(7): 931-938. | |
| 8 | 吴洁琼, 陈圣刚, 赵体波, 等. 疲劳损伤与氯腐蚀作用后钢筋混凝土梁疲劳寿命预测[J]. 建筑结构学报, 2022, 43(S1): 69-76. |
| Wu Jie-qiong, Chen Sheng-gang, Zhao Ti-bo, et al. Fatigue life prediction of fatigue damaged and chloride corroded RC beams[J]. Journal of Building Structures, 2022, 43(S1): 69-76. | |
| 9 | 丑佳璇, 张智涛, 张建仁, 等. NSM CFRP-混凝土界面疲劳黏结性能研究[J]. 中国公路学报, 2022, 35(2): 234-246. |
| Jia-xuan Chou, Zhang Zhi-tao, Zhang Jian-ren, et al. Study on fatigue bond behavior of NSM CFRP-concrete interface[J]. China Journal of Highway and Transport, 2022, 35(2): 234-246. | |
| 10 | 徐晨, 肖涵, 王巍. 超高性能混凝土组合桥面板集群化短焊钉抗疲劳特性[J]. 同济大学学报: 自然科学版, 2022, 50(5): 667-677. |
| Xu Chen, Xiao Han, Wang Wei. Anti-fatigue characteristics of short grouped-stud in ultra-high performance concrete composite bridge decks[J]. Journal of Tongji University(Natural Science Edition), 2022, 50(5): 667-677. | |
| 11 | Xu L, Liu H, Yu Z. A coupled model for investigating the interfacial and fatigue damage evolution of slab tracks in vehicle-track interaction[J]. Applied Mathematical Modelling, 2022, 101: 772-790. |
| 12 | Zhang D, Xie Z, Ueda T, et al. Assessment of fatigue damage of prefabricated concrete composite beams with piezomagnetic signal[J]. Journal of Magnetism and Magnetic Materials, 2022, 547: No.168931. |
| 13 | Jia M, Wu Z, Yu R C, et al. Residual fracture energy of concrete suffering from fatigue loading[J]. Engineering Fracture Mechanics, 2021, 255:No. 107956. |
| 14 | Song Z, Konietzky H, Cai X. Modulus degradation of concrete exposed to compressive fatigue loading: insights from lab testing[J]. Structural Engineering and Mechanics, 2021, 78(3): 281-296. |
| 15 | Sultani M M, Dong L, Chang W G. Corroded post-tensioned concrete beams fatigue behavior under high cyclic loading[J]. International Organization of Scientific Research, 2022, 12(3): 1-15. |
| 16 | Li W, Xiong L, Wang X, et al. Theoretical study on fatigue cumulative damage model of nanometer concrete[J]. IOP Conference Series: Earth and Environmental Science, 2021, 787(1): No.012183. |
| 17 | Wang W, Shen A, He Z, et al. Mechanism and erosion resistance of internally cured concrete including super absorbent polymers against coupled effects of acid rain and fatigue load[J]. Construction and Building Materials, 2021, 290(12): No.123252. |
| 18 | Song Z, Konietzky H, Herbst M, et al. Fatigue and micro-seismic behaviors of concrete disks exposed to cyclic brazilian testing: a numerical investigation based on a 3D particle-based model[J]. International Journal of Fatigue, 2022, 155: No.106629. |
| 19 | Dong G, Wu J, Zhao X. Fatigue performance of recycled aggregate concrete beams with corroded steel reinforcement[J]. ACI Structural Journal, 2022, 119(2): 123-137. |
| 20 | Sainzaja J A, Carrascal I A, Polanco J A, et al. Effect of temperature on fatigue behaviour of self-compacting recycled aggregate concrete[J]. Cement & Concrete Composites, 2022, 125:No. 104309. |
| No related articles found! |
|
||