吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1750-1756.doi: 10.13229/j.cnki.jdxbgxb201406033

• • 上一篇    下一篇

基于深度信息的自主空中加油技术

潘海阳1, 2, 刘顺安1, 姚永明1   

  1. 1.吉林大学 机械工程与科学学院,长春 130022;
    2.空军航空大学 飞行器控制系,长春 130022
  • 收稿日期:2013-05-06 出版日期:2014-11-01 发布日期:2014-11-01
  • 通讯作者: 姚永明(1981-),男,讲师,博士.研究方向:航空物探平台与多场耦合.E-mail:ymyao@jlu.edu.cn
  • 作者简介:潘海阳(1977-),男,博士研究生.研究方向:导航,制导与控制.E-mail:
  • 基金资助:
    “863”国家高技术研究发展计划项目(2013AA063903)

Depth information-basd autonomous aerial refueling

PAN Hai-yang1, 2, LIU Shun-an1, YAO Yong-ming1   

  1. 1.College of Mechanical Science and Engineering, Jilin University, Changchun 130022,China;
    2.Department of Aircraft Control, Aviation University of Air Force, Changchun 130022,China
  • Received:2013-05-06 Online:2014-11-01 Published:2014-11-01

摘要: 在分析自主空中加油技术典型解决方案的基础上,提出了基于三维快速成像激光雷达(3D flash LIDAR)的自主空中加油技术方案。该方案可以在很大程度上减少或消除自主空中加油对GPS的依赖,为合理利用非相似余度导航定位功能提供可靠的技术支撑。首先根据加、受油机空中加油编队飞行特点,确定了以平尾和垂尾为特征平面的加油机点云深度信息特征提取方案和算法。其次利用拉格朗日乘法求取点云子集的最佳拟合平面的单位法向量,为视觉里程计估算加油机相对受油机位姿变化提供了信息。仿真结果表明,特征提取和位姿估算算法可行。同时为了提高视觉里程计对相对位姿估算的准确性,利用矢量中值滤波、平尾与垂尾相关性来消除测量和数据处理中产生的误差,仿真结果表明:在白噪声信噪比为25 dB时,滤波算法可行。

关键词: 飞行器控制与导航技术, 自主空中加油, 三维快速成像激光雷达, 特征提取, 视觉里程计, 位姿估计

Abstract: Based on the analysis of the Autonomous Aerial Refueling (AAR) technology, a Flash LIDAR-based AAR scheme was proposed. This scheme can reduce or eliminate the dependence on GPS for AAR. First, according to the flight formation characteristics of the tanker and receiver aircraft, the horizontal and vertical tail of the tanker was selected as the characteristic plane, and a feature extraction algorithm for the tanker's point cloud subset was worked out. Second, Lagrange multiplier method was employed to calculate the unit normal vector of the best fitting characteristic-plane. The unit normal vectors of the successive point cloud frames were available data for visual odometry to estimate the relative pose change between the tanker and receiver aircraft. Simulations show that the feature extraction and pose estimation algorithm is feasible. Finally, in order to improve the accuracy of relative pose estimation of visual odometry, vector median filtering, horizontal and vertical tail correlation algorithm were employed to eliminate measurement errors. Results show that the filter algorithm is feasible in the condition of white noise SNR 25 dB.

Key words: aircraft control and navigation technology, autonomous aerial refueling(AAR), 3D flash light detection and ranging(LIDAR), feature extraction, visual odometry, pose estimation

中图分类号: 

  • V249.3
[1] 边振杰. 美无人机实现空中加油将带来什么? [DB/OL].[2012-11-30]. http://www.hljnews.cn/gn_gj/2012-10/16/content_1541315_2.htm.
[2] Spinelli C J. Development and testing of a high-speed real-time kinematic precise DGPS positioning system between two aircraft[D]. Wright-Patterson AFB OH: Department of the Air Force, Air University, 2006.
[3] Hansen J L, Murray J E, Campos N V. The NASA Dryden AAR project:a flight test approach to an aerial refueling system[C]∥AIAA Atmospheric Flight Mechanics Conference and Exhibit,Providence, USA, 2004:477-495.
[4] Valasek J, Gunnam K, Kimmett J,et al. Vision-based sensor and navigation system for autonomous air refueling[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5):979-989.
[5] Veth M J. Fusion of imaging and inertial sensors for navigation[D]. Wright-Patterson AFB OH: Department of the Air Force, Air University, 2006.
[6] Chen C I, Stettner R. Drogue tracking using 3D flash lidar for autonomous aerial refueling[C]∥Laser Radar Technology and Applications XVI, Orlando, Florid, 2011:80370Q1-80370Q11.
[7] May S. 3D time-of-flight ranging for robotic perception in dynamic environments[D]. Osnabrück: Institute for Computer Science, Osnabrück University, 2008.
[8] Juberts M, Barbera A. Status report on next generation LADAR for driving unmanned ground vehicles[C]∥Proceedings of SPIE, Philadelphia PA, 2004:1-12.
[9] Bulysheva A, Pierrottetb D, Amzajerdianc F,et al. A. Processing of 3-Dimensional flash lidar terrain images generated from an airborne platform[C]∥Proceedings of SPIE, Orlando, Florida, 2009: 1-9.
[10] 慕春棣, 李波睿. 基于视觉的自动空中加油技术[J]. 清华大学学报:自然科学版,2012,52(5):670-676. Mu Chun-di, Li Bo-rui. Vision-based autonomous aerial refueling[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(5):670-676.
[11] 杜光勋, 全权, 蔡开元. 视觉与惯性传感器融合的隐式卡尔曼滤波位置估计算法[J]. 控制理论与应用, 2012, 29(7):833-840. Du Guang-xun, Quan Quan, Cai Kai-yuan. Implicit Kalman filter for position estimation with visual and inertial sensor fusion[J]. Control Theory & Applications, 2012, 29(7):833-840.
[12] Billingsley J, Bradbeer R. Mechatronics and Machine Vision in Practice[M]. Berlin: Springer, 2008:65-75.
[13] Strelow D W. Motion estimation from image and inertial measurements[D]. Pittsburgh PA: School of Computer Science, Carnegie Mellon University, 2004.
[14] Weaver A D. Using predictive rendering as a vision-aided technique for autonomous aerial refueling[D]. Wright-Patterson AFB OH: Department of the Air Force, Air University, 2009.
[15] Cheng Y, Maimone M W, Matthies L. Visual odometry on the mars exploration rovers-a tool to ensure accurate driving and science imaging[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):54-62.
[16] Natale D J, Baram M S, Tutwiler R L. Point cloud processing strategies for noise filtering, structural segmentation, and meshing of ground-based 3D flash LIDAR images[C]∥2010 IEEE 39th Applied Imagery Pattern Recognition Workshop, Washington DC, 2010:1-8.
[1] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[2] 董强, 刘晶红, 周前飞. 用于遥感图像拼接的改进SURF算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652.
[3] 尹明, 战荫伟, 裴海龙. 基于稀疏补算子学习的图像融合方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[4] 肖钟捷. 基于小波空间特征谱熵的数字图像识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[5] 李贞辉, 王洪光, 王越超, 姜勇, 岳湘. 输电线巡检机器人自主抓线的控制[J]. 吉林大学学报(工学版), 2015, 45(5): 1519-1526.
[6] 刘红,孙爽滋,王庆元,李延忠. 基于PSO的模拟电路故障信息特征提取[J]. 吉林大学学报(工学版), 2015, 45(2): 675-680.
[7] 李学军, 杨晟, 李振举, 杨阿华, 刘涛. 与高精度单点匹配式定位算法[J]. 吉林大学学报(工学版), 2014, 44(4): 1197-1202.
[8] 顾播宇,孙俊喜,李洪祚,刘红喜,刘广文. 基于特征加权模块双方向二维主成分分析的人脸识别[J]. 吉林大学学报(工学版), 2014, 44(3): 828-833.
[9] 纪超, 刘慧英, 孙景峰, 贺胜, 黄民主. 基于空域和频域的图像显著区域检测[J]. 吉林大学学报(工学版), 2014, 44(01): 177-183.
[10] 王卓峥, 贾克斌. 矩阵填充与主元分析在受损图像配准中的应用[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 78-83.
[11] 赵宏伟, 陈霄, 龙曼丽, 裴士辉. 基于Riesz变换的图像边缘检测[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 133-137.
[12] 王海罗, 汪渤. 鲁棒的新型特征提取和匹配算法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 371-375.
[13] 张旭, 郭宝龙, 孟繁杰, 孙伟. 基于IPDSH兴趣点空间区域划分的图像检索[J]. 吉林大学学报(工学版), 2013, 43(05): 1408-1414.
[14] 刘少刚, 郭云龙, 贾鹤鸣. 基于直线特征提取匹配搜救机器人的同步定位与地图构建[J]. 吉林大学学报(工学版), 2013, 43(04): 1035-1044.
[15] 戴金波, 肖霄, 赵宏伟. 基于低分辨率局部二值模式的人脸识别[J]. 吉林大学学报(工学版), 2013, 43(02): 435-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!