吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 783-787.doi: 10.13229/j.cnki.jdxbgxb201503015
柳俊哲, 袁伟静, 贺智敏, 巴明芳, 陈剑斌
LIU Jun-zhe, YUAN Wei-jing, HE Zhi-min, BA Ming-fang, CHEN Jian-bin
摘要: 为了合理地评价混凝土碱骨料反应发生的碱含量,研究了碳化对水泥石中钠离子分布的影响,阐明碳化作用下混凝土碱骨料反应特征。研究结果表明:水泥石碳化之前截面的钠离子分布比较均匀,碳化作用下水泥石中钠离子从碳化区向非碳化区迁移和浓缩,钠离子在碳化区浓度减少,非碳化区浓度升高,碳化界面钠离子浓度最大,显著提高水泥石内未碳化区的钠离子浓度,降低碱骨料反应发生的初始碱含量限制标准,易发生碱骨料反应。
中图分类号:
[1] Fernandesa I, Noronhaa F, Teles M. Microscopic analysis of alkali aggregate reaction products in a 50 year old concrete[J]. Materials Characterization, 2004,53(2-4):295-306. [2] Sellier A, Bourdarot E, Multon S, et al. Combination of structural monitoring and laboratory tests for the assessment of AAR swelling application to a gate structure dam[J]. ACI Material Journal,2009,106(3):281-290. [3] Beyene1 M,Snyder A,Lee R J, et al. Alkali silica reaction as a root cause of distress in a concrete made from alkali carbonate reaction potentially susceptible aggregates[J]. Cement and Concrete Research,2013,51(4):85-95. [4] 谷林涛. 碱骨料反应研究综述[J]. 建筑技术, 2007,38(2):18-21. Gu Lin-tao. Summary on the research of alkali aggregate reaction[J]. Architecture Technology,2007,38(2):18-21. [5] Liu Jun-zhe, Li Yu-shun, Lv Li-hua. Effect of anti-freezing admixtures on alkali-silica reaction in mortars[J]. Journal of Wuhan University of Technology(Materials Science Edition),2005,20(2):80-82. [6] 杨华全,王迎春,曹鹏举,等. 三峡工程混凝土的碱-骨料反应试验研究[J]. 水利学报,2003(1):93-97. Yang Hua-quan, Wang Ying-chun, Cao Peng-ju, et al. Experimental study on alkali-aggregate reaction of concrete of Three Gorges dam[J]. Journal of Hydraulic Engineering, 2003(1):93-97. [7] 宿晓萍,王清.复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J].吉林大学学报:工学版,2015,45(1):112-120. Su Xiao-ping,Wang Qing.Corrosion damage of concrete under multi-salt soaking,freezing-thawing and dry-wet cycles[J].Journal of Jilin University(Engineering and Technology Edition),2015,45(1):112-120. [8] Marques P F, Chastre C. Carbonation service life modelling of RC structures for concrete with Portland and blended cements[J]. Cement and Concrete Composites,2013,37(6):171-184. [9] Dunanta C F, Scrivener K L. Effects of aggregate size on alkali silica reaction induced expansion[J]. Cement and Concrete Research,2012,42(6):745-751. [10] Shayan A. Effects of seawater on AAR expansion of concrete[J]. Cement and Concrete Research,2010,40(4):563-568. [11] Grimal E, Sellier A, Multon S, et al. Concrete modelling for expertise of structures affected by alkali aggregate reaction[J]. Cement and Concrete Research,2010,40(4):502-507. [12] 蔡跃波,丁建彤,白银. 大坝混凝土对碱骨料反应的自免疫力[J]. 岩土工程学报,2008,30(11):1610-1613. Cai Yue-bo, Ding Jian-tong, Bai Yin. Self-immunity of dam concrete to alkali aggregate reaction[J]. Chinese Journal of Geotechnical Engineering,2008,30(11):1610-1613. [13] Lu Du-you , Zhou Xiao-ling, Xu Zhong-zi, et al. Evaluation of laboratory test method for determining the potential alkali contribution from aggregate and the ASR safety of the Three-Gorges dam concrete[J]. Cement and Concrete Research,2006,36(4):1157-1165. [14] Pignatelli R,Comi C,Monteiro P J M. A coupled mechanical and chemical damage model for concrete affected by alkali silica reaction[J]. Cement and Concrete Research,2013,53(6):196-210. [15] Yukse C, Ahar R S, Ahari B A, et al. Evaluation of three test methods for determining the alkali-silica reactivity of glass aggregate[J]. Cement and Concrete Composites,2013,38(3):57-64. [16] Shehataa M H, Thomas M D A. The role of alkali content of Portland cement on the expansion of concrete prisms containing reactive aggregates and supplementary cementing materials[J]. Cement and Concrete Research, 2010,40(4):569-574. |
[1] | 郑一峰, 毛健, 梁世忠, 郑传峰. 高填土场地考虑土体固结的桩基负摩阻力[J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081. |
[2] | 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777. |
[3] | 董悦丽, 郭权, 孙斌, 康玲. 药物分子对接动态任务迁移优化[J]. 吉林大学学报(工学版), 2015, 45(4): 1253-1259. |
[4] | 李军, 倪宏, 王玲芳, 陈君. 流媒体系统中基于请求迁移的任务调度算法[J]. 吉林大学学报(工学版), 2015, 45(3): 938-945. |
[5] | 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667. |
[6] | 刘曙光, 闫敏, 闫长旺, 郭荣跃. 聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能[J]. 吉林大学学报(工学版), 2012, 42(01): 63-67. |
[7] | 李中华, 巴恒静. 混 凝 土 的 抗 盐 冻 性 能[J]. 吉林大学学报(工学版), 2009, 39(04): 926-931. |
[8] | 李艺,闫运起,赵文 . 现役结构增层刚度时变可靠性分析[J]. 吉林大学学报(工学版), 2009, 39(02): 398-0401. |
[9] | 卢朝霞, 曾广周. 优化迁移实例容错执行性能的阶段构建模型[J]. 吉林大学学报(工学版), 2008, 38(06): 1389-1395. |
[10] | 孙绪杰,潘景龙,郑文忠 . 玻璃纤维增强聚合物混凝土小型空心 砌块复合墙片的抗震性能[J]. 吉林大学学报(工学版), 2008, 38(05): 1054-1059. |
[11] | 范鹤,,刘斌,范泽3,王成 . 高填土涵洞相似材料模型试验与数值模拟[J]. 吉林大学学报(工学版), 2008, 38(02): 399-0403. |
[12] | 郭学东,姜浩,. 大跨度预应力混凝土连续梁桥施工控制技术[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 34-0037. |
[13] | 杨公平,曾广周 . 基于导航的迁移工作流组织与执行[J]. 吉林大学学报(工学版), 2006, 36(05): 819-0823. |
[14] | 崔向红, 王树奇, 吴宏, 姜启川. 变质莱氏体钢中共晶碳化物的热处理粒化[J]. 吉林大学学报(工学版), 2002, (1): 42-46. |
[15] | 崔向红, 孙国恩, 吕晓霞, 姜启川, 何镇明. 具有粒状碳化物的新型莱氏体铸造模具钢的组织与性能[J]. 吉林大学学报(工学版), 2000, (2): 33-37. |
|