吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 913-920.doi: 10.13229/j.cnki.jdxbgxb201503033

• • 上一篇    下一篇

随机采样移动轨迹时空热点区域发现及模式挖掘

王亮1, 2, 3, 胡琨元1, 库涛1, 吴俊伟1, 2   

  1. 1.中国科学院 沈阳自动化研究所,沈阳 110016;
    2.中国科学院大学,北京 100039;
    3.西安科技大学 电气与控制工程学院,西安 710054
  • 收稿日期:2013-08-30 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 库涛(1979-),男,副研究员.研究方向:感应网络技术,智能信息处理,社会计算.E-mail:kutao@sia.cn E-mail:liangwang0123@gmail.com
  • 作者简介:王亮(1984-),男,讲师,博士.研究方向:数据挖掘,智能信息处理.
  • 基金资助:
    国家自然科学基金项目(61402360,61203161,61174164)

Discovering spatiotemporal hot spot region and mining patterns fro moving trajectory random sampling

WANG Liang1, 2, 3, HU Kun-yuan1, KU Tao1, WU Jun-wei1, 2   

  1. 1.Shenyang Institute of Automation,Chinese Academy of Sciences, Shenyang 110016,China;
    2.University of Chinese Academy of Sciences, Beijing 100039,China;
    3.School of Electrical and Control Engineering,Xi'an University of Science and Technology,Xi'an University of Science and Technology,Xi'an 710054,China
  • Received:2013-08-30 Online:2015-05-01 Published:2015-05-01

摘要: 针对随机采样条件下移动轨迹在时间轴分布疏密不均的特点,在将三维时空轨迹转换为一维时间投影数据的基础上,提出一种基于密集时间区间自动检测的时空热点区域发现与移动模式挖掘方法。通过自底向上的动态聚类方式以探测密集时间区间,进而在密集时间区间内进行移动轨迹的时空热点区域发现。最后,采用深度优先的序列模式挖掘算法挖掘频繁移动模式集合。基于合成数据的仿真试验,验证了算法在有效性及可扩展性方面均具有较好的性能。

关键词: 人工智能, 数据挖掘, 随机采样移动轨迹, 密集时间区间, 热点区域

Abstract: The moving trajectory by random sampling distributes unevenly in time dimension. After projecting the three-dimensional spatiotemporal trajectory data into one-dimensional time domain, a spatiotemporal hot spot region discovery and moving pattern mining methods are proposed based on automatic detection of intensive time intervals. Through detecting intensive time intervals dynamically with a bottom-up clustering strategy, the spatiotemporal hot spot regions are discovered in corresponding time intervals. A depth-first algorithm is designed to mine the set of frequency moving patterns. Finally, based on synthetic moving trajectory dataset, the effectiveness and scalability of the proposed algorithms are verified.

Key words: artificial intelligence, data mining, moving trajectory by random sampling, intensive time interval, hot spot region

中图分类号: 

  • TP18
[1] Lee J W, Paek O H, Ryu K H. Temporal moving pattern mining for location-based service[J]. Journal of Systems and Software,2004,73(3):481-490.
[2] 郑宇,谢幸. 基于用户轨迹挖掘的智能位置服务[J]. 中国计算机学会通讯,2010,6(6):23-30.
Zheng Yu,Xie Xing. Enable smart location-based services by mining user trajectories[J]. Communications of the CCF,2010,6(6):23-30.
[3] Cao H P, Mamoulis N, Cheung D W. Mining frequent spatio-temporal sequential patterns[C]∥Fifth IEEE International Conference on Data Mining,2005:82-89.
[4] Lee J G, Han J W, Whang K Y. Trajectory clustering: a partition-and-group framework[C]∥Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,Beijing,China,2007:593-604.
[5] De Lucca Siqueira F, Bogorny V. Discovering chasing behavior in moving object trajectories[J]. Transactions in GIS,2011,15(5):667-688.
[6] Yanagisawa Y, Akahani J, Satoh T. Shape-based similarity query for trajectory of mobile objects[C]∥Mobile Data Management,Berlin,Germany,2003:63-77.
[7] Giannotti F, Nanni M, Pinelli F, et al. Trajectory pattern mining[C]∥Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,New York,2007:330-339.
[8] Kang J, Yong H S. Mining spatio-temporal patterns in trajectory data[J]. JIPS,2010,6(4):521-536.
[9] Wang L,Hu K,Ku T,et al. Discovering closed frequent patterns in moving trajectory database[C]∥14th International Conference on Communication Technology,Chengdu,2012:567-572.
[10] Lee A J T, Chen Y A, Ip W C. Mining frequent trajectory patterns in spatial—temporal databases[J]. Information Sciences,2009,179(13):2218-2231.
[11] Zheng Y, Lou Y, Zhang C,et al. Map-matching for low-sampling-rate GPS Trajectories[P]. U.S. Patent:12/712,857,2010-02-25.
[12] Pfoser D, Jensen C S. Capturing the uncertainty of moving-object representations[C]∥Advances in Spatial Databases,Berlin,Germany,1999:111-131.
[13] Miwa T, Kiuchi D, Yamamoto T,et al. Development of map matching algorithm for low frequency probe data[J]. Transportation Research Part C: Emerging Technologies,2012,22:132-145.
[14] Theodoridis Y,Nascimento M A. Generating spatiotemporal datasets on the WWW[J]. ACM SIGMOD Record,2000,29(3):39-43.
[15] Theodoridis Y,Silva J R O,Nascimento M A. On the generation of spatiotemporal datasets[C]∥In Proceedings of the 6th Int'l Symposium on Large Spatial Databases,Hong Kong,China,1999:147-164.
[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 邓剑勋, 熊忠阳, 邓欣. 基于谱聚类矩阵的改进DNALA算法[J]. 吉林大学学报(工学版), 2018, 48(3): 903-908.
[9] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[10] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[11] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[12] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[13] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[14] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[15] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!