吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 159-165.doi: 10.13229/j.cnki.jdxbgxb201601024

• • 上一篇    下一篇

挖掘机工作装置疲劳分析方法

邱清盈1, 魏振凯1, 高宇1, 冯培恩1, 殷鹏龙2   

  1. 1.浙江大学 流体动力与机电系统国家重点实验室,杭州 310027;
    2.国机重工(常州)挖掘机有限公司,江苏 常州,213136
  • 收稿日期:2014-04-16 出版日期:2016-01-30 发布日期:2016-01-30
  • 作者简介:邱清盈(1970-),男,副教授,博士.研究方向:机械优化设计和创新设计方法,挖掘机优化设计、结构强度分析和测试.E-mail:medeslab@zju.edu.cn
  • 基金资助:
    国家科技支撑计划项目(2013BAF07B04)

Fatigue analysis method of working devices of hydraulic excavator

QIU Qing-ying1, WEI Zhen-kai1, GAO Yu1, FENG Pei-en1, YIN Peng-long2   

  1. 1.State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
    2.SINOMACH-HI(Changzhou) Excavator Co, Ltd, Changzhou 213136, China
  • Received:2014-04-16 Online:2016-01-30 Published:2016-01-30

摘要: 针对挖掘机载荷谱难以实测获取,从而难以对其工作装置进行疲劳分析的问题,提出一种新的解决方法:首先通过对铲斗挖掘土壤过程进行仿真,获得挖掘阻力的完整变化过程,即挖掘阻力载荷谱;然后通过整机作业过程仿真,获得与上述挖掘阻力载荷谱相对应的工作装置各铰点载荷谱,并通过实测油缸压力进行对比验证;最后以经过验证的各铰点载荷谱实现工作装置的动臂和斗杆疲劳寿命分析。以某23 t液压反铲挖掘机为例,详述了采用上述方法对其工作装置进行疲劳分析的过程,计算出动臂和斗杆在典型作业循环工况下的最低疲劳寿命分别为105.978和106.47次,验证了所提方法的有效性。

关键词: 矿山机械工程, 疲劳分析, 任意拉格朗日-欧拉算法, 液压挖掘机, 工作装置

Abstract: It is hard to measure the load history of the working device of hydraulic excavator in fatigue analysis. To solve this problem a novel fatigue analysis method is proposed. First, the complete change process of digging resistance, named Digging Resistance Load Spectrum (DRLS), is obtained by simulating the digging process of soil with the bucket of hydraulic excavator. Second, according to the DRLS, the load history of each hinge of the working device is calculated by the operation simulation of a full typical working cycle of the excavator. The simulation results are then verified by comparing with the actual cylinder pressure measured from the experiment similar to the working condition in the simulation. Finally, the fatigue analysis of the boom and arm of the working device are accomplished with the verified load histories of the hinges. The effectiveness of the proposed method is demonstrated with the fatigue analysis process of the working device of a 23 t hydraulic backhoe excavator. The results come out that the minimum lives of the boom and arm are 105.978 and 106.47 cycles respectively.

Key words: mine mechanical engineering, fatigue analysis, arbitrary Lagrangian-Eulerian(ALE), hydraulic excavator, working device

中图分类号: 

  • TD42
[1] 张卫国,权龙,程珩,等. 真实载荷驱动下挖掘机工作装置疲劳寿命研究[J]. 农业机械学报, 2011, 42(5):35-38.
Zhang Wei-guo, Quan Long, Cheng Hang, et al. Fatigue analysis on working device of excavator driven by practical load[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 35-38.
[2] 周宏兵,胡雄伟,孙永刚,等. 基于ADAMS仿真技术的挖掘机铰点受力分析[J]. 郑州大学学报:工学版,2009,30(2):71-74.
Zhou Hong-bing, Hu Xiong-wei, Sun Yong-gang, et al. Force analysis of hinges of excavator based on ADAMS simulation technology[J]. Journal of Zhengzhou University(Engineering Science), 2009, 30(2):71-74.
[3] 朱连双. 微型挖掘机工作装置的有限寿命设计研究[D]. 济南:山东大学机械工程学院,2013.
Zhu Lian-shuang. Finite life design research of mini excavator working device[D].Ji'nan: School of Mechanical Engineering,Shandong University, 2013.
[4] 白瑞.液压挖掘机工作装置的有限元分析及疲劳寿命预测[D].太原:太原理工大学机械电子工程研究所,2011.
Bai Rui. Finite element analysis and fatigue life prediction of hydraulic excavator working device[D]. Taiyuan: Institute of Mechatronic Engineering,Taiyuan University of Technology,2011.
[5] LSTC. LS-DYNA keyword user's manual[R]. Livermore Software Technology Corporation, USA, 2013.
[6] 刘英,于立宏. Mohr-Coulomb屈服准则在岩土工程中的应用[J]. 世界地质, 2010, 28(4):633-639.
Liu Ying, Yu Li-hong. Application of Mohr-Coulomb yield criterion in geo-technical engineering[J]. Global Geology, 2010, 28(4):633-639.
[7] Di Y, Sato T. Computational modeling of large deformation of saturated soils using an ALE finite element method[R]. Kyoto University, No. 47C, 2004.
[8] Susila E, Hryciw R D. Large displacement FEM modeling of the cone penetration test (CPT) in normally consolidated sand[J]. International Journal for Numerical and Analytical Methods in Geomechnics, 2003, 27(7): 585-602.
[9] Karmakara S, Ashrafizadeh S R, Kushwaha R L. Experimental validation of computational fluid dynamics modeling for narrow tillage tool draft[J]. Journal of Terra Mechanics, 2009, 46(6): 277-283.
[10] 上海岩土工程勘察设计研究院有限公司. 昆山花桥国际商务城F地块酒店公寓岩土工程勘察报告[R]. 2007.
[11] 丁峻宏,金先龙,郭毅之. 土壤切削大变形的三维数值仿真[J]. 农业机械学报, 2007,36(4): 118-121.
Ding Jun-hong, Jin Xian-long, Guo Yi-zhi. Study on 3-D numerical simulation for soil cutting with large deformation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 36(4):118-121.
[12] 沈建奇,金先龙,王吉云,等. 基于并行计算的盾构机过大堤三维数值模拟[J]. 上海交通大学学报, 2009, 43(6):1017-1020.
Shen Jian-qi,Jin Xian-long, Wang Ji-yun, et al. Three dimensional numerical simulation of shield tunneling through flood levee based on parallel computing[J]. Journal of Shanghai Jiaotong Uniersity, 2009, 43(6): 1017-1020.
[13] 王同建, 陈晋市,赵锋, 等. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报:工学版, 2013, 43(3):607-612.
Wang Tong-jian, Chen Jin-shi, Zhao Feng, et al. Mechanical hydraulic co-simulation and experiment of full hydraulic steering systems[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(3):607-612.
[14] 朱正宇,何国求,陈成澍,等. 多轴非比例加载高周疲劳研究进展[J]. 同济大学学报, 2006, 34(9):1221-1225.
Zhu Zheng-yu, He Guo-qiu, Chen Cheng-shu, et al. Recent advances of multiaxial high cycle fatigue under nonproportional loading[J]. Journal of Tongji University, 2006, 34(9):1221-1225.
[1] 李因武, 吴庆文, 常志勇, 杨成. 基于仿生斗齿的反铲液压挖掘机动臂仿真优化设计[J]. 吉林大学学报(工学版), 2018, 48(3): 821-827.
[2] 刘汉光, 王国强, 孟东阁, 赵寰宇. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报(工学版), 2018, 48(2): 486-491.
[3] 彭贝, 高宇, 冯培恩, 邱清盈. 液压挖掘机回转启动过程节能技术[J]. 吉林大学学报(工学版), 2016, 46(6): 1912-1921.
[4] 曾义聪,徐海良,李峰,吴波. 鼓形误差对高压辊磨机组合辊承载扭矩的影响[J]. 吉林大学学报(工学版), 2015, 45(2): 466-472.
[5] 陈明东, 赵丁选, 倪涛. 液压挖掘机动臂闭式油路节能系统[J]. , 2012, 42(05): 1140-1144.
[6] 赵丁选, 陈明东, 戴群亮, 章二平, 徐春博. 油液混合动力液压挖掘机动臂势能回收系统[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 150-154.
[7] 张大庆;何清华;郝鹏;陈欠根 . 液压挖掘机铲斗轨迹跟踪的鲁棒控制[J]. 吉林大学学报(工学版), 2006, 36(06): 934-938.
[8] 张大庆, 何清华, 郝鹏, 郭勇. 液压挖掘机铲斗的轨迹跟踪控制[J]. 吉林大学学报(工学版), 2005, 35(05): 490-0494.
[9] 丛茜, 柴雄梁, 杨晓东, 金敬福. 利用柔性仿生技术减少矿车粘附[J]. 吉林大学学报(工学版), 2005, 35(04): 437-441.
[10] 王昕, , 赵丁选, 尚涛, 石祥钟, 唐新星. 基于单神经元的液压挖掘机自适应PID节能控制[J]. 吉林大学学报(工学版), 2005, 35(04): 377-380.
[11] 戴文跃, 梁昊. 装载机工作装置的动力学仿真与综合优化设计[J]. 吉林大学学报(工学版), 2004, (4): 602-605.
[12] 尚涛, 赵丁选, 肖英奎, 国香恩, 金立生, 张红彦. 液压挖掘机功率匹配节能控制系统[J]. 吉林大学学报(工学版), 2004, (4): 592-596.
[13] 国香恩, 赵丁选, 尚涛, 张红彦. 模糊控制在液压挖掘机节能中的应用[J]. 吉林大学学报(工学版), 2004, (2): 217-221.
[14] 金立生, 赵丁选, 黄海东. 液压挖掘机节能用智能PID专家控制系统[J]. 吉林大学学报(工学版), 2001, (4): 12-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!