吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 605-609.doi: 10.13229/j.cnki.jdxbgxb20161378

• • 上一篇    下一篇

三维毫米波通信系统的性能分析

陈瑞瑞, 张海林   

  1. 西安电子科技大学 综合业务网理论及关键技术国家重点实验室,西安 710071
  • 收稿日期:2016-12-20 出版日期:2018-03-01 发布日期:2018-03-01
  • 作者简介:陈瑞瑞(1989-),男,博士研究生. 研究方向:宽带无线通信. E-mail:rrchen@stu.xidian.edu.cn
  • 基金资助:
    国家自然科学基金项目(61401330,61371127)

Performance analysis of 3D millimeter wave communications

CHEN Rui-rui, ZHANG Hai-lin   

  1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
  • Received:2016-12-20 Online:2018-03-01 Published:2018-03-01

摘要: 针对基于均匀线阵的毫米波通信系统,建立了三维多输入多输出(MIMO)信道模型,研究了容量与天线间距、载波频率、天线数和收发天线距离的关系。首先,利用信道的正交条件,推导出获得最大系统容量的最优天线间距;然后,分析了天线数的增加以及天线间距偏差所引起的性能变化。仿真结果表明,当收发天线距离在一定范围时毫米波通信系统将获得最大容量,且超过了瑞利信道下传统MIMO系统的容量。

关键词: 通信技术, 毫米波, 多输入多输出, 均匀线阵, 容量

Abstract: For millimeter wave communication with uniform linear Antenna Arrays (AA), a 3D Multiple Input Multiple Output (MIMO) channel model is established to study the relationships between the capacity and the antenna separation, the carrier frequency, the antenna number an the distance between the transmit and the receive AA. First, utilizing the channel orthogonality, the optima antenna separation corresponding to the achievable maximum capacity is derived. Then, the performance variations caused by the increasing antenna number and the deviation of the antenna separation are analyzed respectively. Simulation results show that, when the distance between the transmit and the receive AA is within a certain range, the millimeter wave communication system can achieve the optimal capacity, which exceeds the capacity of the conventional MIMO system in Rayleigh fading channel.

Key words: communication technology, millimeter wave, multiple input multiple output (MIMO), uniform linear antenna arrays, capacity

中图分类号: 

  • TN928
[1] Wang P,Li Y,Yuan X,et al.Tens of gigabits wireless communications over E-band LoS MIMO channels with uniform linear antenna arrays[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 3791-3805.
[2] Goldsmith A, Jafar S A, Jindal N, et al. Capacity limits of MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2003, 21(5): 684-702.
[3] 陈健,李佳龙,阔永红. AF-MIMO 系统机会中继选择算法[J]. 吉林大学学报:工学版,2014,44(6): 1818-1824.
Chen Jian, Li Jia-long, Kuo Yong-hong. Opportunistic relay selection algorithm for AF-MIMO system[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1818-1824.
[4] Cai W, Wang P, Li Y, et al. Deployment optimization of uniform linear antenna arrays for a two-path millimeter wave communication system[J]. IEEE Communications Letters, 2015, 19(4): 669-672.
[5] Sun S, Rappaport T S, Heath R W, et al. MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?[J]. IEEE Communications Magazine, 2014, 52(12): 110-121.
[6] Torkildson E, Madhow U, Rodwell M. Indoor millimeter wave MIMO: feasibility and performance[J]. IEEE Transactions on Wireless Communications, 2011, 10(12): 4150-4160.
[7] Bøhagen F, Orten P, Øien G E. Design of optimal high-rank line-of-sight MIMO channels[J]. IEEE Transactions on Wireless Communications, 2007, 6(4): 1420-1425.
[8] Bohagen F, Orten P, Oien G E. Construction and capacity analysis of high-rank line-of-sight MIMO channels[C]∥IEEE Wireless Communications and Networking Conference, New Orleans, USA, 2005: 432-437.
[9] Su W, Matyjas J D, Gans M J, et al. Maximum achievable capacity in airborne MIMO communications with arbitrary alignments of linear transceiver antenna arrays[J]. IEEE Transactions on Wireless Communications, 2013, 12(11): 5584-5593.
[10] Rappaport T. Wireless Communications: Principles and Practice [M]. 2nd ed. New Jersey: Prentice Hall, 2002.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[3] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[4] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[5] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[6] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[7] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[8] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[9] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[10] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[11] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[13] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[14] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[15] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!