吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 468-477.doi: 10.13229/j.cnki.jdxbgxb201702017
杨昕卉1, 2, 薛伟1, 郭楠1
YANG Xin-hui1, 2, XUE Wei1, GUO Nan1
摘要: 为了改善普通胶合木梁的受力性能,提出了在其底部粘贴钢板或增设螺钉的增强方式,从而形成钢板增强胶合木梁。进行了21根梁的抗弯试验,分析了钢板厚度、是否设置螺钉对梁破坏形态、承载力和变形能力的影响,并与普通胶合木梁进行对比。结果表明:粘贴2、3和4 mm厚钢板增强后,梁承载力分别提高了73.3%、90.0%和71.0%,随着钢板厚度的增加,承载力先增大后减小;粘贴同厚度钢板并设置螺钉后,梁承载力分别提高了76.4%、96.9%和148.6%,随着钢板厚度的增加,承载力增大,螺钉的增强效果在钢板较厚时表现明显。钢板增强后,梁的极限变形比普通胶合木梁提高了6.2%~61.1%,钢板厚度和是否设置螺钉对梁变形能力的影响与其对承载力的影响类似。在验证了钢板增强胶合木梁基本符合平截面假定后,提出了此类构件的受弯承载力计算公式,并与试验结果进行对比,结果表明,理论值与试验值的平均误差不大于10%。
中图分类号:
[1] 赵越,杨春梅,齐英杰,等. 新中国成立后木结构建筑的发展概况[J]. 林业机械与木工设备,2012,40(5):10-12. Zhao Yue,Yang Chun-mei,Qi Ying-jie,et al. Development of wood architecture since the founding of new China[J]. Forestry Machinery and Woodworking Equipment, 2012,40(5):10-12. [2] 侯桂深. 现代木结构房屋的先进性及发展趋势分析[J]. 产业与科技论坛,2012,11(23):113-114. Hou Gui-shen. Advancement and development trend of wooden structure building[J]. Industrial and Science Tribune,2012,11(23):113-114. [3] 蔡汉忠,甄小翠. 湘西传统木建筑构造探析[J]. 森林工程,2012,28(6):94-95. Cai Han-zhong, Zhen Xiao-cui. An analysis of the xiangxi traditional wood building construction[J]. Forest Engineering,2012,28(6):94-95. [4] Issa C A, Kmeid Z. Advanced wood engineering: glulam beams[J]. Original Research Article Construction and Building Materials,2005,19(2):99-106. [5] Ribeiro A S, de Jesus A M P, Lima A M, et al. Study of strengthening solutions for glued-laminated wood beams of maritime pine wood[J]. Construction and Building Materials,2009,23(8):2738-2745. [6] 刘伟庆,杨会峰. 工程木梁的受弯性能试验研究[J]. 建筑结构学报,2008,29(1):90-95. Liu Wei-qing, Yang Hui-feng. Experimental study on flexural behavior of engineered wood beams[J]. Journal of Building Structures,2008,29(1):90-95. [7] Ferrier E, Labossière P, Neale K. Mechanical behavior of an innovative hybrid beam made of glulam and ultrahigh-performance concrete reinforced with FRP or steel[J]. Journal of Composites for Construction,2010,14(2):217-228. [8] Manalo A C, Aravinthan T, Karunasena W. Flexural behaviour of glue-laminated fibre composite sandwich beams[J]. Composite Structures,2010,92(11):2703-2711. [9] Khorsandnia N, Valipour H R, Foster S, et al. A force-based frame finite element formulation for analysis of two-and three-layered composite beams with material non-linearity[J]. International Journal of Non-Linear Mechanics,2014,62:12-22. [10] Yahyaei-Moayyed M, Taheri F. Creep response of glued-laminated beam reinforced with pre-stressed sub-laminated composite[J]. Construction and Building Materials,2011,25(5):2495-2506. [11] 王全凤,李飞,陈浩军,等. GFRP加固木梁抗弯性能的试验研究与理论分析[J]. 建筑结构学报,2010,40(5):50-52,107. Wang Quan-feng, Li Fei, Chen Hao-jun,et al. Experimental study on bending behavior of timber beams reinforced with GFRP sheets[J]. Journal of Building Structures,2010,40(5):50-52,107. [12] Huang Dong-sheng, Zhou Ai-ping, Bian Yu-ling. Experimental and analytical study on the nonlinear bending of parallel strand bamboo beams[J]. Construction and Building Materials,2013,44:585-592. [13] Manalo A C, Aravinthan T, Karunasena W. Flexural behaviour of glue-laminated fibre composite sandwich beams[J]. Composite Structures,2010,92(11):2703-2711. [14] Toratti T, Schnabl S, Turk G. Reliability analysis of a glulam beam[J]. Original Research Article Structural Safety,2007,29(4):279-293. |
[1] | 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435. |
[2] | 郭楠, 张平阳, 左煜, 左宏亮. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报(工学版), 2017, 47(3): 778-788. |
[3] | 王少杰, 徐赵东, 李舒, 王凯洋,Dyke Shirley J. 基于应变监测的连续梁支承差异沉降识别[J]. 吉林大学学报(工学版), 2016, 46(4): 1090-1096. |
[4] | 苏迎社, 杨媛媛. 高温对建筑混凝土材料抗震抗压的作用及原理[J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442. |
[5] | 宿晓萍,王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015, 45(1): 112-120. |
[6] | 姜浩, 郭学东. 基于地震激励的混凝土桥梁模态参数识别[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 185-188. |
[7] | 刘寒冰, 郑继光, 邹品德. 叠合式钢筋混凝土圆截面短柱偏心受压承载力计算[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163. |
[8] | 刘寒冰,刘天明,张云龙. 钢-混凝土组合连续梁抗弯性能[J]. 吉林大学学报(工学版), 2009, 39(06): 1486-1491. |
|