吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 459-467.doi: 10.13229/j.cnki.jdxbgxb201702016

• • 上一篇    下一篇

基于细观力学的沥青胶浆动态剪切模量预测

王志臣1, 2, 郭乃胜3, 赵颖华3, 陈忠达2   

  1. 1.长安大学 材料科学与工程学院,西安 710061;
    2.长安大学 特殊地区公路工程教育部重点实验室,西安 710064;
    3.大连海事大学 道路与桥梁工程研究所,辽宁 大连 116026
  • 收稿日期:2015-11-22 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 郭乃胜(1978-),男,副教授,博士.研究方向:道路工程.E-mail:naishengguo@126.com
  • 作者简介:王志臣(1987-),男,博士研究生.研究方向:道路建筑材料.E-mail:zhichenwang@aliyun.com
  • 基金资助:
    国家自然科学基金项目(51308084); 中央高校基本科研业务费专项项目(3132014223).

Dynamic shear modulus prediction of asphalt mastic based on micromechanics

WANG Zhi-chen1, 2, GUO Nai-sheng3, ZHAO Ying-hua3, CHEN Zhong-da2   

  1. 1.School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China;
    2.Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang'an University, Xi'an 710064, China;
    3.Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
  • Received:2015-11-22 Online:2017-03-20 Published:2017-03-20

摘要: 将沥青胶浆视为由沥青基体和矿粉夹杂相组成的两相复合材料,基于简化的Christensen-Lo模型有效模量解答,应用广义Maxwell模型和黏弹性对应原理,建立了沥青胶浆动态剪切模量预测的细观力学模型,采用不同种类沥青胶浆的动态剪切流变仪(DSR)试验对预测值进行了校正,并分析了模型参数对预测值的影响。结果表明,矿粉体积分数为10%时,预测值与试验值较为一致,但在20%和30%体积分数下,预测值小于试验值;预测偏差主要归因于较高体积分数下矿粉颗粒间的相互作用,采用逾渗理论对提出的预测模型进行修正,据此得到的预测值与试验值较为吻合;矿粉弹性模量对预测值的影响较小,增大矿粉体积分数可以有效提高预测值。

关键词: 道路工程, 沥青胶浆, 细观力学, 动态剪切模量, 黏弹性, 逾渗理论

Abstract: Asphalt mastic is regarded as a two-phase composite with asphalt matrix and embedded-matrix coated mineral filler. A micromechanical model is established to predict the dynamic shear modulus of asphalt mastic. The generalized Maxwell model and elastic-viscoelastic correspondence principle are used in this model based on the simplified Christensen-Lo model solutions. The DSR tests for asphalt mastic are conducted to verify the proposed model, and the model parameters affecting the modulus prediction are explored. The results show that, compared with measured modulus, the predicted modulus is acceptable for asphalt with 10% filler volume fraction. However, with filler volume fractions of 20% and 30%, the predicted moduli are smaller than the measured ones, and the discrepancy mainly results from the interaction between filler particles at higher volume fraction. The percolation theory is then introduced to obtained a new modified model, by which the predicted moduli agree with measured ones. The elastic modulus of the fillers has a slight effect on the predicted moduli, and the increase in volume fraction of filler leads to the increase in the predicted modulus.

Key words: road engineering, asphalt mastic, micromechanics, dynamic shear modulus, viscoelasticity, percolation theory

中图分类号: 

  • U414
[1] 李华. 沥青胶浆粘弹性研究[D]. 西安: 长安大学公路学院, 2006.
Li Hua. A study of viscoelastic properties of asphalt mortar[D]. Xi'an: College of Highway, Chang'an University, 2006.
[2] 付海英, 谢雷东, 虞鸣, 等. SBS改性沥青动态剪切流变性能评价的研究[J]. 公路交通科技, 2005, 22 (12): 9-12.
Fu Hai-ying, Xie Lei-dong, Yu Ming, et al. Dynamic shear rheologic properties of SBS-g-M modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2005, 22(12): 9-12.
[3] Bari J, Witczak M W. New predicitive for the viscosity and complex shear modulus of Asphalt binders for use with the mechanistic-empirical pavement design guide[C]∥TRB, Washington D C, 2007.
[4] Christensen D W, Pellinen T, Bonaquist R F. Hirsch model for estimating the modulus of asphalt concrete[J]. Journal of Association of Asphalt Paving Technologists, 2003,72: 97-121.
[5] Druta C. A micromechanical approach for predicting the complex shear modulus and accumulated shear strain of asphalt mixtures from binder and mastic[D]. Baton Rouge: College of Agricultural and Mechanical Louisiana State University , 2006.
[6] Li G Q, Li Y Q, Metcalf J B, et al. Elastic modulus prediction of asphalt concrete[J]. Journal of Materials in Civil Engineering,1999, 11(3): 236-241.
[7] Li Y Q, Metcalf J B. Two-step approach to prediction of asphalt mixtures modulus from two-phase micromechanical models[J]. J Mater Civ Eng, 2005, 17(4): 407-415.
[8] 朱兴一, 黄志义, 陈伟球. 基于复合材料细观力学模型的沥青混合料弹性模量预测[J]. 中国公路学报, 2010, 23(3): 29-33.
Zhu Xing-yi, Huang Zhi-yi, Chen Wei-qiu. Elastic modulus prediction of asphalt concrete based on composite material micromechanics model[J]. China Journal of Highway and Transport, 2010, 23 (3): 29-33.
[9] Shu X, Huang B S. Dynamic modulus prediction of HMA mixtures based on the viscoelastic micromechanical model[J]. Journal of Materials in Civil Engineering, 2008, 20(8): 530-538.
[10] 张裕卿, 黄晓明. 基于微观力学的沥青混合料黏弹性预测[J]. 吉林大学学报:工学版, 2010, 40 (1): 52-57.
Zhang Yu-qing, Huang Xiao-ming. Viscoelasticity prediction of asphalt mixture based on micromechanics[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (1): 52-57.
[11] 郭乃胜, 赵颖华. 基于细观力学的沥青混合料动态模量预测[J]. 工程力学, 2012, 29 (10): 13-19.
Guo Nai-sheng, Zhao Ying-hua. Dynamic modulus prediction of asphalt mixtures based on micromechanics[J]. Engineering Mechanics, 2012, 29 (10): 13-19.
[12] Luo R, Lytton R L. Self-consistent micromechanics models of an asphalt mixture[J]. Journal of Materials in Civil Engineering, 2011, 23 (1): 49-55.
[13] Zhu X Y, Wang X F, Yu Y. Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect[J]. International Journal of Engineering Science, 2014,76:34-46.
[14] Shashidhar N, Shenoy A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics[J]. Mechanics of Materials, 2002, 34(10):657-669.
[15] Aigner E, Lackner R, Pichler C. Multiscale prediction of viscoelastic properties of asphalt concrete[J].Journal of Materials in Civil Engineering, 2009, 21(12): 771-780.
[16] Pichler C, Lackner R. Upscaling of viscoelastic of highly-filled composites: Investigation of matrix- inclusion-type morphologies with power-law viscoelastic material response[J]. Composites Science and Technology, 2009, 69:2410-2420.
[17] Christensen R M, Lo K H. Solution for effective shear properties in three phase sphere and cylinder models[J].Journal of the Mechanics and Physies of Solids, 1979,27: 315-330.
[18] Park S W, Schapery R A. Methods of interconversion between linear viscoelastic material functions. Part I-a numerical method based on Prony series[J]. International Journal of Solids and Structures, 1999,36: 1653-1675.
[19] 赵延庆, 吴剑, 文健. 沥青混合料动态模量及其主曲线的确定与分析[J]. 公路, 2006,8: 163-166.
Zhao Yan-qing, Wu Jian, Wen Jian. Determination and analysis of dynamic modulus of asphalt mixture and its master curve[J]. Highway, 2006,8: 163-166.
[20] Schapery R A. A simple collocation method for fitting viscoelastic models to experimental data[R]. GALCIT SM61-23, California Institute of Technology, Pasadena, CA, 1962: 1-13.
[21] Hsu W Y, Giri M R, Ikeda R M. Percolation transition and elastic properties of block copolymers[J]. Macromolecules, 1982,15:1210-1212.
[22] Stauffer D, Aharony A. Introduction to Percolation Theory[M]. 2nd ed. London: Taylor and Francis, 1992.
[23] Alberola N D, Mele P. Viscoelasticity of polymers filled by rigid or soft particles[J]. Polym Compos, 1996,17:751-759.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[7] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[8] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[11] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[12] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[13] 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[14] 刘寒冰, 张互助, 王静. 失水干燥对路基压实黏质土抗剪强度特性的影响[J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
[15] 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!