吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 655-660.doi: 10.13229/j.cnki.jdxbgxb201702042

• • 上一篇    下一篇

基于张量特征值和特征向量的磁性目标定位

万成彪1, 潘孟春1, 张琦1, 庞鸿锋1, 朱学军2   

  1. 1.国防科学技术大学 机电工程与自动化学院,长沙 410073;
    2.中国人民解放军95835部队,乌鲁木齐 841700
  • 收稿日期:2015-12-26 出版日期:2017-03-20 发布日期:2017-03-20
  • 作者简介:万成彪(1988-),男,博士研究生.研究方向:磁目标探测.E-mail:wan.chengbiao@gmail.com
  • 基金资助:
    国家自然科学基金项目(51175507).

Magnetic object localization with eigenvalue and eigenvector of tensor

WAN Cheng-biao1, PAN Meng-chun1, ZHANG Qi1, PANG Hong-feng1, ZHU Xue-jun2   

  1. 1.College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073,China;
    2.Unit 95835 PLA, Urumqi 841700,China
  • Received:2015-12-26 Online:2017-03-20 Published:2017-03-20

摘要: 针对磁偶极子模型提出了基于磁性目标磁梯度张量矩阵的特征值和特征向量的定向和定位方法。该方法以磁梯度张量信息作为磁测信息,以测量坐标系下的测量点坐标作为辅助信息,先通过单点梯度张量解得位置方向矢量,包括虚解和正解,再结合多点方向和辅助信息确定正解从而实现定位。在高信噪比情况下的仿真和实验结果表明,该方法与直接反演法的定位效果相当,说明了该方法的可行性。

关键词: 通信技术, 磁性目标, 定向, 定位, 梯度张量, 特征值, 特征向量

Abstract: A method of object orientation and localization with the eigenvalue and eigenvector of magnetic gradient tensor matrix was proposed for a magnetic dipole. Using the magnetic gradient tensor as a main information and the sensor's coordinates in the reference frame as an ancillary information, first, this approach can calculate two directions from the sensor toward the object, including false and true, and then make sure the real position. In the case of high Signal to Noise Ratio (SNR), the results of simulation and experiment show that the proposed method has the similar localization performance to the direct inversion, which indicates that this method can work in practice.

Key words: communication technology, magnetic object, orientation, localization, gradient tensor, eigenvalue, eigenvector

中图分类号: 

  • TN911.23
[1] 张昌达. 航空磁力梯度张量测量——航空磁测技术的最新进展[J].工程地球物理学报,2006, 3(5):354-361.
Zhang Chang-da. Airborne tensor magnetic gradiometry—the latest progress of airborne magnetometric technology[J]. Chinese Journal of Engineering Geophysics, 2006, 3(5):354-361.
[2] Sheinker A, Boaz L, Nizan S, et al. Localization and magnetic moment estimation of a ferromagnetic target by simulated annealing[J]. Measurement Science and Technology, 2007, 18: 3451-3457.
[3] Sheinker A, Nizan S, Boris G, et al. Remote sensing of a magnetic target utilizing population based incremental learning[J]. Sensors and Actuators A-Physica,2008, 143: 215-223.
[4] Schmidt P W, Clark D A. The magnetic gradient tensor: its properties and uses in source characterization[J]. The Leading Edge,2006(1): 75-78.
[5] 张朝阳,肖昌汉,高俊吉,等. 磁性物体磁偶极子模型适用性的试验研究[J]. 应用基础与工程科学学报,2010,18(5):862-868.
Zhang Zhao-yang, Xiao Chang-han, Gao Jun-ji, et al. Experiment research of magnetic dipole model applicability for a magnetic object[J]. Journal of Basic Science and Engineering, 2010,18(5):862-868.
[6] Birsan M. Recursive Bayesian method for magnetic dipole tracking with a tensor gradiometer[J]. IEEE Transactions on Magnetics, 2011,47(2):409-415.
[7] 任志良,黄玉盈, 陈泽茂. 磁偶极子源的被动测距与跟踪[J]. 数据采集与处理,2001,16(3):380-383.
Ren Zhi-liang, Huang Yu-ying, Chen Ze-mao. Passive ranging and tracking method for magnetic dipole source[J]. Journal of Data Acquisition & Processing, 2001,16(3):380-383.
[8] 张朝阳,肖昌汉,阎辉. 磁性目标的单点磁梯度张量定位方法[J]. 探测与控制学报,2009,31(4):44-48.
Zhang Zhao-yang, Xiao Chang-han, Yan Hui. Localization of a magnetic object based on magnetic gradient tensor at a single point[J]. Journal of Detection & Control,2009,31(4):44-48.
[9] Wynn W N, Frahm C P,Carroll P J, et al. Advanved superconducting gradiometer/magnetometer arrays and a novel signal processing technique[J]. IEEE Trans Mag,1975, 11(2): 701-707.
[10] Wynn W M. Magnetic dipole localization with a gradiometer: obtaining unique solutions[Z]. 1995.
[11] 李光,随阳轶,刘丽敏,等. 基于差分的磁偶极子单点张量定位方法[J]. 探测与控制学报,2012, 34(5): 50-54.
Li Guang, Sui Yang-yi, Liu Li-min, et al. Magnetic dipole single-point tensor positioning based on the difference method[J]. Journal of Detection and Control, 2012, 34(5): 50-54.
[12] Yin A G,Zhang Y,Fan H,et al. Magnetic dipole localization based on magnetic gradient tensor data at a single point[J]. Journal of Applied Remote Sensing, 2014, 8(1):5230-5237.
[13] 张光,张英堂,李志宁,等. 载体平动条件下的磁梯度张量定位方法[J]. 华中科技大学学报:自然科学版, 2013, 41(1): 21-24.
Zhang Guang, Zhang Ying-tang, Li Zhi-ning, et al. Localizing method of magnetic field gradient tensor under carriers moving parallelly[J]. J Huazhong Univ of Sci & Tech (Natural Science Edition), 2013, 41(1): 21-24.
[14] 黄玉,郝燕玲. 引入载体潜深信息的水下磁场定位方法[J]. 华中科技大学学报:自然科学版, 2011, 39(10): 36-40.
Huang Yu, Hao Yan-ling. Novel underwater magnetic localization by introducing the information of vehicle draft depth[J]. J Huazhong Univ of Sci & Tech(Natural Science Edition), 2011, 39(10): 36-40.
[15] Clark D A.New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength[J]. Exploration Geophysics, 2012,43: 267-282.
[16] Phillip S, David C, Keith L, et al. GETMAG - a SQUID magnetic tensor gradiometer for mineral and oil exploration main[J]. Exploration Geophysics,2004, 35: 297-305.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[13] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[14] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!