吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 686-692.doi: 10.13229/j.cnki.jdxbgxb201702046

• • 上一篇    

用于SERF原子磁力仪的原子气室无磁加热系统

王言章1, 2, 秦佳男1, 2, 张雪1, 2, 陈晨1, 2   

  1. 1.吉林大学 仪器科学与电气工程学院,长春 130061;
    2.吉林大学 地球信息探测仪器教育部重点实验室,长春 130061
  • 收稿日期:2016-02-02 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 陈晨(1983-),男,副教授.研究方向:弱磁检测系统技术及应用.E-mail:cchen@jlu.edu.cn
  • 作者简介:王言章(1979-),男,教授,博士生导师.研究方向:弱磁检测系统技术及应用.E-mail:yanzhang@jlu.edu.cn
  • 基金资助:
    吉林省科技厅项目(20160519023JH,20150414052GH,20140520118JH); 国家自然科学基金项目(61403160); 中国博士后科学基金项目(2014M551194).

Non-magnetism heating system for atomic gas cell used in SERF atomic magnetometer

WANG Yan-zhang1, 2, QIN Jia-nan1, 2, ZHANG Xue1, 2, CHEN Chen1, 2   

  1. 1.College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061,China;
    2.Key Laboratory for Geophysical Exploration Equipment, Ministry of Education, Jilin University, Changchun 130061,China
  • Received:2016-02-02 Online:2017-03-20 Published:2017-03-20

摘要: 原子气室温度是直接影响无自旋交换弛豫(SERF)原子磁力仪的测量灵敏度的重要因素,本文设计研制了一种高精度的原子气室无磁加热系统。在硬件设计中,采用PTC加热装置与Pt1000温度检测电路共同构成完整的闭环控制系统。在软件设计中,针对不同目标温度范围,分别对PID三个参数完成整定。同时采用积分分离式PID控制方法,以消除超调,并通过间断加热的方式满足磁力仪检测时的极低干扰磁场要求。利用该系统进行温度控制实验,温度控制范围为80~190 ℃,温度控制精度为±0.02 ℃,稳定时间为60 s,间断加热期间产生的干扰磁场低于0.1 nT,为SERF原子磁力仪的性能提升提供了可靠保障。

关键词: 电子技术, 无自旋交换弛豫原子磁力仪, 无磁加热系统, 数字PID控制方法, 原子气室

Abstract: The temperature of atomic cell is an important factor affecting the measurement sensitivity of Spin-Exchange-Relaxation-Free (SERF) atomic magnetometer. A non-magnetism heating system with high-precision is designed and developed. In hardware design, the PTC heating device and Pt1000 temperature sensing circuit are adopted to complete the closed-lop control system. In software design, the three parameters P, I and D are set respectively for different temperatures. Meanwhile, the integral separated PID control method is used to eliminate overshoot, and an on-off heating mode is used to satisfy the requirement for ultra-low magnetic field when the magnetometer is working. Temperature control test is performed using the developed heating system. The temperature control range is 80 ℃ to 190 ℃, the accuracy is ± 0.02 ℃, and the control procedure is 60 s. In addition, the magnetic interference is less than 0.1 nT when the heating is discontinuous, which provides the reliability to promote the performance of SERF atomic magnetometer.

Key words: electronic technology, spin-exchange-relaxation-free atomic magnetometer, non-magnetism heating system, digital PID control method, atomic gas cell

中图分类号: 

  • TP271
[1] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15):151110.
[2] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature,2003,422(6932):596-599.
[3] 楚中毅,孙晓光,万双爱,等.无自旋交换弛豫原子磁强计的主动磁补偿[J].光学精密工程,2014,22(7):1808-1813.
Chu Zhong-yi, Sun Xiao-guang, Wan Shuang-ai, et al. Active magnetic compensation of spin-exchange-relaxation-free atomic magnetometer[J]. Optics and Precision Engineering, 2014, 22(7):1808-1813.
[4] 赵静,刘光达,安战锋,等.提高高温超导磁力仪动态范围的补偿方法[J].吉林大学学报:工学版,2011,41(5):1342-1347.
Zhao Jing, Liu Guang-da, An Zhan-feng, et al. Compensation method for improving dynamic range of HTS SQUID magnetometer[J].Journal of Jilin University (Engineering and Technology Edition), 2011,41(5):1342-1347.
[5] 顾源,石荣晔,王延辉.分布式反馈激光抽运铯磁力仪灵敏度相关参数研究[J].物理学报,2014,63 (11):110701.
Gu Yuan, Shi Rong-ye, Wang Yan-hui.Study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer[J]. Acta Physica Sinica, 2014, 63 (11):110701.
[6] Fang J C, Li R J, Duan L H. Study of the operation temperature in the spin-exchange relaxation free magnetometer[J]. The Review of Scientific Instruments,2015,86(7):073116.
[7] Fang J C, Wang T, Quan W. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect[J]. Review of Scientific Instruments,2014,85(6):063108.
[8] Ledbetter M P, Savukov I M , Acosta V M, et al.Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 2008, 77: 033408.
[9] Fang J C, Wan S G, Qin J, et al.Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation[J]. Journal of the Optical Society of America B, 2014, 31(3):512-516.
[10] 刘强. 全光铯原子磁力仪系统设计[D].哈尔滨:哈尔滨工程大学自动化学院,2012:63-65.
Liu Qiang. System design of all optical Cs atomic magnetometer[D]. Harbin:College of Automation, Harbin Engineering University, 2012: 63-65.
[11] 田小建,尚祖国,高博,等.980 nm高稳定度激光泵浦源控制系统[J].光学精密工程,2015,23(4):982-987.
Tian Xiao-jian, Shang Zu-guo, Gao Bo, et al. Control system for 980 nm high stability laser pump source[J]. Optics and Precision Engineering,2015, 23(4):982-987.
[12] 陈晨,党敬民,黄渐强,等. 高稳定、强鲁棒性DFB激光器温度控制系统[J]. 吉林大学学报:工学版,2013,43(4): 1004-1010.
Chen Chen, Dang Jing-min, Huang Jian-qiang, et al. DFB laser temperature control system with high stability and strong robustness[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4): 1004-1010.
[13] 秦硕,巩岩,袁文全,等.大时间热响应常数投影物镜的超高精度温度控[J].光学精密工程,2013,21(1):108-114.
Qin Shuo, Gong Yan, Yuan Wen-quan, et al. High precision temperature control for projection lens with long time thermal response constant[J]. Optics and Precision Engineering,2013, 21(1):108-114.
[14] 李金堂,樊润洁.一种无超调钝角拐点的PID温控设计[J].电子设计工程,2010,18(8):82-85.
Li Jin-tang, Fan Run-jie. A design of PID temperature control without super scale obtuse angle and inflexion[J]. Electronic Design Engineering, 2010, 18(8):82-85.
[1] 尼启良, 向秋东, 刘修富, 梁景广, 姜忠志. 高速紫外光子探测器位置读出电路的实现[J]. 吉林大学学报(工学版), 2017, 47(6): 1986-1990.
[2] 蒲鑫, 田小建, 王春民, 张晶, 董磊, 尹晶. 基于光纤混沌替代电路的图像加密方案[J]. 吉林大学学报(工学版), 2014, 44(01): 270-275.
[3] 吴海超, 林君, 李哲, 张怀柱, 杨泓渊, 陈祖斌, 郑凡. 无缆存储式地震仪无线网络监控技术[J]. , 2012, 42(05): 1296-1301.
[4] 庞丽莉, 吕奇辰, 王世隆, 随阳轶, 林君. 基于平方根-卡尔曼滤波的无线网络仪器时钟同步算法[J]. , 2012, 42(05): 1291-1295.
[5] 殷崇勇, 尹首一, 魏少军. 可重构媒体处理器配置信息优化生成技术[J]. , 2012, 42(04): 1059-1065.
[6] 钟玉林, 温旭辉, 刘钧, 刘志宏. 国产450A-600V车用智能功率模块的研发[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 316-320.
[7] 王芳荣, 林晓珑, 王晓鹏, 张佳全, 张铁强, 冯毅. 粘胶长丝在线实时监测系统设计与处理算法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 288-291.
[8] 潘伟涛1,谢元斌2,郝跃2,史江义2. 基于启发式链搜索的频繁子电路提取算法[J]. 吉林大学学报(工学版), 2011, 41(6): 1748-1753.
[9] 秦政坤,贺飞,刘春玲,马春生. 离子刻蚀工艺对聚合物阵列波导光栅理论模拟的影响[J]. 吉林大学学报(工学版), 2011, 41(03): 791-794.
[10] 宋建辉, 袁峰, 丁振良, 廖百健. 基于非条件稳定时域有限差分法的传输线瞬态分析[J]. 吉林大学学报(工学版), 2010, 40(05): 1438-1441.
[11] 罗韬,姚素英,史再峰,陆尧 . 视频芯片中的OSD核的设计及FPGA的实现[J]. 吉林大学学报(工学版), 2008, 38(06): 1452-1457.
[12] 郁发新,,孙琳琳 . 基于太阳矢量的皮卫星姿态角测量误差分析[J]. 吉林大学学报(工学版), 2008, 38(04): 976-980.
[13] 赵继印;郑蕊蕊;刘宇 . 基于梯形灰色聚类分析的电力变压器故障诊断
[J]. 吉林大学学报(工学版), 2008, 38(03): 726-0730.
[14] 刘杰,姚素英,史再峰,解晓东 . 基于Verilog的随机时钟误差测试平台设计[J]. 吉林大学学报(工学版), 2007, 37(03): 667-0671.
[15] 谢宣松, 随阳轶, 林君. 图形化语言结构及运行模型[J]. 吉林大学学报(工学版), 2006, 36(02): 219-0223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!