吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 677-685.doi: 10.13229/j.cnki.jdxbgxb201702045

• • 上一篇    下一篇

基于局部边缘预测的空谱联合高光谱图像无损压缩

王柯俨1, 李云松1, 宋娟2, 廖惠琳1, 吴宪云1   

  1. 1.西安电子科技大学 综合业务网国家重点实验室,西安 710071;
    2.西安电子科技大学 软件学院,西安 710071
  • 收稿日期:2015-11-25 出版日期:2017-03-20 发布日期:2017-03-20
  • 作者简介:王柯俨(1980-), 女,副教授,博士.研究方向:图像压缩与处理.E-mail:kywang@mail.xidian.edu.cn
  • 基金资助:
    国家自然科学基金项目(61301291,61401324); 高等学校创新引智基地项目(B08038).

Spatial-spectral lossless compression of hyperspectral images using local edge based prediction

WANG Ke-yan1, LI Yun-song1, SONG Juan2, LIAO Hui-lin1, WU Xian-yun1   

  1. 1.State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071,China;
    2.School of Software, Xidian University, Xi'an 710071,China
  • Received:2015-11-25 Online:2017-03-20 Published:2017-03-20

摘要: 利用高光谱图像丰富的边缘特性和很强的谱间结构相似性,提出一种基于局部边缘预测的空谱联合高光谱图像无损压缩方法。该方法利用谱间最小方差算法的编码框架,在原有谱内、谱间预测模式的基础上,增加了第三种“无预测”的预测模式,以更好地适应高光谱图像的相关特性。在谱内预测时,针对图像中普遍存在的局部斜边缘,将对角边缘检测引入到中值预测中,提出了改进的对角边缘预测算法。在谱间预测时,通过分析局部边缘存在时上下文的特点,提出简单有效的上下文选择策略,在此基础上,提出了基于局部边缘结构相似性的谱间预测算法,在上下文模板内自适应地选择最佳预测上下文进行谱间预测。实验结果表明,本文方法有效利用了图像的局部边缘特性,更好地去除了谱内和谱间的相关性,改善了预测性能,提高了无损压缩比。

关键词: 信息处理技术, 高光谱图像, 无损压缩, 空谱联合, 局部边缘预测

Abstract: By fully exploiting the abundant edge features and the strong interband structural correlation of hyperspectral images, a spatial-spectral lossless compression algorithm for hyperspectral images is proposed using local edge based prediction. Based on the coding framework of spectral oriented least square (SLSQ), the algorithm presents a three-modes predictor, which adds a third prediction mode (no prediction) in addition to the original intraband prediction and interband prediction modes. Therefore, the proposed algorithm is more accordant with the correlation property of hyperspectral images. Considering that local diagonal edges generally exist in images, an improved diagonal edge based predictor is adopted for intraband prediction by introducing diagonal edge detection into the median predictor. For interband prediction, a simple but effective strategy for selecting the prediction context is first presented through the analysis of the property of the context when an edge exists in a local context window, followed by an interband predictor based on local edge structural similarity is used to select the optimal prediction context adaptively within the context window. Experimental results show that the proposed algorithm can better remove both intraband and interband correlations, improve the prediction performance and lossless compression ratio.

Key words: Information processing, hyperspectral images, lossless compression, spatial-spectral, local edge based prediction

中图分类号: 

  • TP751.1
[1] Huber-Lerner M, Hadar O, Rotman S R. Compression of hyperspectral images containing a subpixel target[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2246-2255.
[2] 郭文川, 董金磊. 高光谱成像结合人工神经网络无损检测桃的硬度[J]. 光学精密工程, 2015, 23(6): 1530-1537.
Guo Wen-chuan, Dong Jin-lei. Nondestructive detection on firmness of peaches based on hyperspectral imaging and artificial neural networks[J]. Optics and Precision Engineering, 2015, 23(6): 1530-1537.
[3] Sanjith S, Ganesan R. A review on hyperspectral image compression[C]∥Proceedings of 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Tamilnadu, India, 2014: 1159-1163.
[4] Song J W, Zhang Z W, Chen X M. Lossless compression of hyperspectral imagery via RLS filter[J]. Electronics Letters, 2013, 49(16): 992-993.
[5] Magli E, Olmo G, Quacchio E. Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(1): 21-25.
[6] Wang H, Babacan S D, Sayood K. Lossless hyperspectral image compression using context-based conditional average[J]. IEEE Trans on Geoscience and Remote Sensing, 2007, 45(12): 4187-4193.
[7] Rizzo F, Carpentieri B, Motta G, et al. Low-complexity lossless compression of hyperspectral imagery via linear prediction[J]. IEEE Signal Processing Letters, 2005, 12(2):138-141.
[8] Du Q, Ly N, Fowler J E. An operational approach to PCA+JPEG2000 compression of hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2237-2245.
[9] Wen J, Ma C, Zhao J. FIVQ algorithm for interference hyper-spectral image compression[J]. Optics Communications, 2014, 322: 97-104.
[10] 粘永健,辛勤,汤毅,等. 基于多波段预测的高光谱图像分布式无损压缩[J]. 光学精密工程, 2012,20(4): 906-912.
Nian Yong-jian, Xin Qin, Tang Yi, et al. Distributed lossless compression of hyperspectral images based on multi-band prediction[J]. Optics and Precision Engineering, 2012,20(4): 906-912.
[11] Mielikainen J. Lossless compression of hyperspectral images using lookup tables[J]. IEEE Signal Processing Letters, 2006, 13(3):157 -160.
[12] Huang B, Sriraja Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection[C]∥Image and Signal Processing for Remote Sensing XII, 2006, 6365: 63650L.
[13] 李昌国, 郭科. 应用自适应预测器排序的三阶预测高光谱图像无损压缩[J]. 光学精密工程, 2014, 22(3): 761-769.
Li Chang-guo, Guo Ke. Lossless compression of hyperspectral images using three-stage prediction based on adaptive predictor reordering[J]. Optics and Precision Engineering, 2014, 22(3): 761-769.
[14] 杨鹰, 孔玲君, 刘真. 基于压缩感知的多光谱图像去马赛克算法[J]. 液晶与显示, 2017, 32(1): 56-61.
Yang Ying, Kong Ling-jun, Liu Zhen. Multi-spectral demosaicking method based on compressive sensing[J]. Chinese Journal of Liquid Crystal and Displays, 2017, 32(1): 56-61.
[15] 殷亚男, 王晓东, 李丙玉. 基于预测和JPEG2000的MODIS红外辐射多光谱图像无损压缩算法[J]. 液晶与显示, 2013, 28(6):922-926.
Yin Ya-nan, Wang Xiao-dong, Li Bing-yu. Lossless compression method based on prediction and JPEG2000 for MODIS emissive IR bands multispectral image[J]. Chinese Journal of Liquid Crystal and Displays, 2013, 28(6):922-926.
[16] ISO/IEC 14495-1, ITU-T Recommendation T.87. Lossless and near-lossless compression of continuous-tone still images[S].
[17] Edirisinghe E A, Bedi S, Grecos C. Improvements to JPEG-LS via diagonal edge based prediction[C]∥Proceedings of SPIE, Visual Communications and Image Processing, San Jose,CA,2002:604-613.
[18] Wang K, Wang L, Liao H,et al. Lossless compression of hyperspectral images using adaptive edge-based prediction[C]∥Proceedings of SPIE, Satellite Data Compression, Communications, and Processing IX, San Diego, California, USA, 2013.
[19] AVIRIS Images[EB/OL].[2015-01-14].http://aviris.jpl.nasa.gov/html/aviris. overview.html.
[20] AVIRIS Images in CCSDS Test Set[EB/OL].[2015-01-14].http://compression.jpl.nasa.gov/hyperspectral.
[21] Kiely A B, Klimesh M A. Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery[J]. IEEE Trans on Geoscience and Remote Sensing, 2009, 47(8):2672-2678.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!