吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1712-1724.doi: 10.13229/j.cnki.jdxbgxb20170805

• • 上一篇    下一篇

疏排桩-土钉墙组合支护基坑土拱效应模型试验

古海东1(),罗春红2   

  1. 1. 浙江省交通规划设计研究院,杭州 310006
    2. 浙江公路技师学院 路桥系,杭州310023
  • 收稿日期:2017-08-01 出版日期:2018-11-20 发布日期:2018-12-11
  • 作者简介:古海东(1983-),男,高级工程师,博士.研究方向:岩土工程,桩基础、深基坑工程,软土地基及边坡工程.
  • 基金资助:
    国家自然科学基金项目(40972179)

Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall

GU Hai-dong1(),LUO Chun-hong2   

  1. 1. Zhejiang Provincial Institute of Communications Planning, Design & Research, Hangzhou 310006, China;
    2. Department of Road and Bridge, Zhejiang Highway Technicians College, Hangzhou 310023, China
  • Received:2017-08-01 Online:2018-11-20 Published:2018-12-11

摘要:

采用同济大学中型岩土离心机进行了8组疏排桩-土钉墙组合支护基坑的离心模型试验。基于离心模型试验结果,提出了疏排桩-土钉墙组合支护基坑桩间土拱效应的最终形态分析模型,并结合三维有限元数值分析探讨了桩间土拱效应的动态发展过程以及桩间距和土钉参数对土拱形态的影响规律。研究结果表明:当桩间距与桩径之比B/D≥8或土钉长度与基坑开挖深度之比L/H≥2/3时,桩间土体无明显土拱效应;当桩间距与桩径之比B/D=4~6且土钉长度与基坑开挖深度之比L/H<2/3时,桩间土拱效应明显;疏排桩-土钉墙组合支护基坑的土拱最终形态表现为沿基坑顶面成抛物线形,延基坑深度方向具有一定直立深度的曲面。

关键词: 岩土工程, 疏排桩, 土钉墙, 土拱效应, 离心机模型试验, 三维有限元分析

Abstract:

Eight groups of centrifuge tests of pit foundation supporting with scattered piles and soil nailing were carried out by Tongji University. Based on the results of eight group tests, the analysis model of the final form of soil arching effect in pit supporting structure with scattered row piles and soil nailing was put forward. Not only the dynamic development process of soil arching effect between piles was explored, but also the effects of the pile spacing and soil nailing parameters on the soil arching pattern was analyzed in combining with three-dimensional finite element numerical simulation. The results show that, for pit supporting structure with scattered row piles and soil nailing, when the ratio of pile spacing to pile diameter is greater than 8 or the ratio of soil nail length to the excavation depth is greater than 2/3, the soil between piles can not form soil arching effect. In addition, when the ratio of pile spacing to pile diameter is in the range of 4~6 and the ratio of soil nail length to excavation depth is less than 2/3, the soil arching effect is obvious. Furthermore, for pit supporting structure with scattered row piles and soil nailing, the final form of soil arching effect is a curved surface, which along the top surface appears as parabolic and along the depth direction has a certain vertical depth.

Key words: geotechnical engineering, scattered row piles, soil nail wall, soil arching effect, centrifuge model test, three-dimensional finite element analysis

中图分类号: 

  • TU47

表1

土样的物理力学特性"

比重 含水量
/%
密度
/(g?cm-3)
固结不排水强度
黏聚力/kPa 内摩擦角/(°)
2.7 40 1.9 7 33.5

图1

模型桩示意图"

图2

模型土钉"

图3

土钉墙面层"

表2

离心机模型试验结果"

模型
编号
桩间距
B/mm
钉长L
/mm
土钉水
平间距
Sh/mm
土钉竖
向间距
Sv/mm
最大离心
加速度
/(9.8 m·s-2)
1 120 66.7 20 40 60
2 120 100.0 20 40 80
3 120 133.3 20 40 90
4 120 200.0 20 40 120
5 80 66.7 20 40 80
6 160 66.7 20 40 50
7 120 66.7 20 20 80
8 120 66.7 40 20 40

图4

离心试验模型"

表3

加速度与原型尺寸关系"

加速度
/(9.8 m·s-2)
边坡高度
H/m
桩长L'/m 桩径D/m
1 0.20 0.40 0.02
10 2.00 4.00 0.2
20 4.00 8.00 0.4
30 6.00 12.00 0.6
40 8.00 16.00 0.8
50 10.00 20.00 1.0

图5

位移传感器布置图"

图6

摄像机动态监控系统"

图7

离心模型试验后基坑形态"

图8

计算模型简图"

图9

排桩承担的荷载"

表4

排桩计算宽度与桩径之比b/D"

模型
编号
离心加速度
30g 40g 50g 60g 70g 80g 90g 100g 110g 120g
1 1.33 2.59 4.91 5.67 - - - - - -
2 1.20 2.30 3.81 4.45 5.50 5.69 - - - -
3 0.96 1.29 1.46 1.52 1.65 2.07 2.775 - - -
4 0.64 0.87 1.07 1.29 1.55 1.69 1.85 1.93 1.99 2.05
5 1.59 2.23 2.42 2.77 3.09 - - - - -
6 1.59 2.10 2.62 - - - - - - -
7 0.77 0.86 1.13 1.64 4.94 5.46 - - - -
8 2.76 3.38 - - - - - - - -

表5

有限元模型计算参数"

材料 弹性模量
/MPa
泊松比 粘聚力
/kPa
内摩擦角
/(°)
容重
/(kN·m-3)
70 000 0.2 - - 27
土体 30 0.35 7.5 33.7 19
土钉 210 000 0.2 - - 28
面板 7 000 0.2 - - 27

图10

有限元模型简图"

图11

地表沉降(模型试验5)"

图12

有限元模型的破坏形态"

图13

桩身内力及变形(模型试验5)"

图14

桩后土体水平位移(n=70g)"

图15

滑裂面及土拱形态(n=70g)"

图16

土拱形态"

表6

土拱参数"

参数 模型编号
1 2 3 4 5 6 7 8
拱高/mm 30 45 0 0 25 0 5 65
直立深度/mm 100 80 0 0 120 0 20 60

图17

桩间距对土拱形态的影响"

图18

土钉长度对土拱形态的影响"

图19

土钉间距对土拱形态的影响"

[1] 宋广, 黄建华, 宋二祥 . 超前微桩复合土钉支护三维非线性分析[J]. 岩土工程学报, 2010,32(增刊1):151-155.
Song Guang, Huang Jian-hua, Song Er-xiang . Three dimensional nonlinear analysis of composite soil nailing with micro piles for deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010,32(Sup.1):151-155.
[2] 吴忠诚, 杨志银, 罗小满 , 等. 疏排桩锚-土钉墙组合合支护结构稳定性分析[J]. 岩石力学与工程学报, 2006,25(增刊2):3607-3613.
doi: 10.3321/j.issn:1000-6915.2006.z2.042
Wu Zhong-cheng, Yang Zhi-yin, Luo Xiao-man , et al. Stability analysis of scattered row pile-soil-nailed wall protection structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(Sup.2):3607-3613.
doi: 10.3321/j.issn:1000-6915.2006.z2.042
[3] 公宝兴, 孙振 . 钢管桩与土钉墙联合支护设计研究[J]. 国防交通工程与技术, 2005(1):65-68.
doi: 10.3969/j.issn.1672-3953.2005.01.020
Gong Bao-xing, Sun Zhen . The design of the retaining support with steel tube piles and soil-nail wall[J]. Traffic Engineering and Technology National Defence, 2005(1):65-68.
doi: 10.3969/j.issn.1672-3953.2005.01.020
[4] 杨志银 . 复合土钉墙技术在深圳的应用与发展[J]. 岩土工程学报, 2006,28(增刊):1673-1676.
doi: 10.3321/j.issn:1000-4548.2006.z1.082
Yang Zhi-yin . Development and application of composite soil nailing walls in Shenzhen[D]. Chinese Journal of Geotechnical Engineering, 2006,28(Sup.):1673-1676.
doi: 10.3321/j.issn:1000-4548.2006.z1.082
[5] 杨志银, 张俊, 王凯旭 . 复合土钉墙技术的研究及应用[J]. 岩土工程学报, 2005,27(2):153-156.
doi: 10.3321/j.issn:1000-4548.2005.02.004
Yang Zhi-yin, Zhang Jun, Wang Kai-xu . Development of composite soil nailing walls[J]. Chinese Journal of Geotechnical Engineering, 2005,27(2):153-156.
doi: 10.3321/j.issn:1000-4548.2005.02.004
[6] Hewlett W J, Randolph M F . Analysis of piled embankments[J]. Ground Engineering, 1988,21(3):12-18.
[7] Low B K, Tang S K, Choa V . Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994,120(11):1917-1938.
doi: 10.1061/(ASCE)0733-9410(1994)120:11(1917)
[8] 曹卫平, 陈仁朋, 陈云敏 . 桩承式加筋路堤土拱效应试验研究[J]. 岩土工程学报, 2007,29(3):436-441.
doi: 10.3321/j.issn:1000-4548.2007.03.021
Cao Wei-ping, Chen Ren-peng, Chen Yun-min . Experimental investigation on soil arching in piled reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 2007,29(3):436-441.
doi: 10.3321/j.issn:1000-4548.2007.03.021
[9] 曹卫平, 凌道盛, 陈云敏 . 刚性桩加固高速公路软基土拱效应现场试验研究及其与解析解的比较[J]. 岩土工程学报, 2007,29(10):1576-1581.
Cao Wei-ping, Ling Dao-sheng, Chen Yun-min . Field test on soil arching of highway embankments reinforced with rigid piles and their comparison with current analytical methods[J]. Chinese Journal of Geotechnical Engineering, 2007,29(10):1576-1581.
[10] Ito T, Matsui T . Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundation, 1975,15(4):43-59.
doi: 10.3208/sandf1972.15.4_43
[11] Ito T . Extended design method for multi row stabilizing piles against landslide[J]. Soils and Foundation, 1982,22(1):1-13.
[12] Bosscher J, Gray H . Soil arching in sandy slopes[J]. Journal of Geotechnical Engineering, 1986,112(6):626-645.
doi: 10.1061/(ASCE)0733-9410(1986)112:6(626)
[13] 朱碧堂, 温国炫, 刘一亮 . 基坑开挖和支护中土层拱效应的理论分析[J]. 建筑技术, 2002,33(2):97-98.
Zhu Bi-tang, Wen Guo-xuan, Liu Yi-liang . Theoretical analysis of soil in excavation and retaining works[J]. Architecture Technology, 2002,33(2):97-98.
[14] 周德培, 肖世国, 夏雄 . 边坡工程中抗滑桩合理桩间距的探讨[J]. 岩土工程学报, 2004,26(1):132-135.
doi: 10.3321/j.issn:1000-4548.2004.01.025
Zhou De-pei, Xiao Shi-guo, Xia Xiong . Discussion on rational spacing between adjacent anti-slide piles in some cutting slope projects[J]. Chinese Journal of Geotechnical Engineering, 2004,26(1):132-135.
doi: 10.3321/j.issn:1000-4548.2004.01.025
[15] 贾海莉, 王成华, 李江洪 . 基于土拱效应的抗滑桩与护壁桩的桩间距分析[J]. 工程地质学报, 2004,12(1):98-103.
doi: 10.3969/j.issn.1004-9665.2004.01.018
Jia Hai-li, Wang Cheng-hua, Li Jiang-hong . Analysis of pile spacing between anti-sliding piles and pertaining piles in accordance with soil arching effect[J]. Journal of Engineering Geology, 2004,12(1):98-103.
doi: 10.3969/j.issn.1004-9665.2004.01.018
[16] 蒋良潍, 黄润秋, 蒋忠信 . 黏性土桩间土拱效应计算与桩间距分析[J]. 岩土力学, 2006,27(3):445-450.
doi: 10.3969/j.issn.1000-7598.2006.03.021
Jiang Liang-wei, Huang Run-qiu, Jiang Zhong-xin . Analysis of soil arching effect between adjacent piles and their spacing in cohesive soils[J]. Rock and Soil Mechanics, 2006,27(3):445-450.
doi: 10.3969/j.issn.1000-7598.2006.03.021
[17] 古海东, 杨敏 . 考虑土拱效应的疏排桩支护基坑内力和变形分析[J]. 岩土力学, 2014,35(12):3531-3540.
Gu Hai-dong, Yang Min . Analysis of internal forces and displacement of pit supporting structure with scattered row piles considering soil arching effect[J]. Rock and Soil Mechanics, 2014,35(12):3531-3540.
[18] 古海东, 杨敏 . 土钉墙在疏排桩支护基坑中的加固效果试验研究[J]. 土木工程学报, 2015,48(1):129-138.
Gu Hai-dong, Yang Min . Experimental study on reinforcement effect of soil-nailed wall in pit excavation supported with scattered row piles[J]. China Civil Engineering Journal, 2015,48(1):129-138.
[19] JGJ120—2012. 建筑基坑支护计算规程[S].
[20] 古海东, 杨敏 . 疏排桩-土钉墙组合支护结构排桩荷载分担比试验研究[J]. 建筑结构学报, 2013,35(2):102-110.
Gu Hai-dong, Yang Min . Experimental study on pile load sharing ratio of composite structure with scattered piles and soil nailing[J]. Journal of Building Structures, 2013,35(2):102-110.
[1] 苏迎社,杨媛媛. 疏排桩支护结构中土拱荷载传递比分析[J]. 吉林大学学报(工学版), 2015, 45(2): 400-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[2] 李雪霞,冯久超 . 一种基于逆向迭代的非相干检测的]混沌数字通信方案[J]. 吉林大学学报(工学版), 2007, 37(01): 202 -205 .
[3] 钱直睿,李明哲,孙刚,谭富星,金文姬 . 球形面多道次多点成形的数值模拟[J]. 吉林大学学报(工学版), 2007, 37(02): 338 -0342 .
[4] 程平,张海涛,高岩,李俊锋,王洪艳 . ANN在聚丙烯酸酯乳液性质预测中的应用
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[5] 林琳;王树勋;魏小丽 . 基于遗传模糊高斯混合模型的训练方法[J]. 吉林大学学报(工学版), 2006, 36(06): 967 -0972 .
[6] 张大庆;何清华;郝鹏;陈欠根 . 液压挖掘机铲斗轨迹跟踪的鲁棒控制[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[7] 徐安,乔向明. 基于更新理论的复杂设备故障率表达[J]. 吉林大学学报(工学版), 2006, 36(03): 359 -0362 .
[8] 詹军. 用于自适应巡航控制的汽车纵向动力学模型的建立[J]. 吉林大学学报(工学版), 2006, 36(02): 157 -0160 .
[9] 杜忠泽,黄俊霞,符寒光,王经涛,赵西成. 65Mn钢大塑性变形后的组织与力学性能[J]. 吉林大学学报(工学版), 2006, 36(02): 143 -0147 .
[10] 杨智君,田地,周斌. 基于NDIS中间层驱动程序的网络监测器[J]. 吉林大学学报(工学版), 2006, 36(02): 224 -0226 .