吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1725-1734.doi: 10.13229/j.cnki.jdxbgxb20171090

• • 上一篇    下一篇

跨断层桥梁结构地震响应影响

惠迎新1,2(),毛明杰1,刘海峰1,张尚荣1   

  1. 1. 宁夏大学 土木与水利工程学院,银川 750021
    2. 东南大学 交通学院,南京 210096
  • 收稿日期:2017-11-10 出版日期:2018-11-20 发布日期:2018-12-11
  • 作者简介:惠迎新(1985-),男,讲师,博士研究生.研究方向:桥梁抗震及结构分析.
  • 基金资助:
    宁夏高等学校优青培育基金项目(NGY2017005)

Influence of structural seismic response of bridges crossing active fault

HUI Ying-xin1,2(),MAO Ming-jie1,LIU Hai-feng1,ZHANG Shang-rong1   

  1. 1. College of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
    2. School of Transportation, Southeast University, Nanjing 210096,China
  • Received:2017-11-10 Online:2018-11-20 Published:2018-12-11

摘要:

以一座跨走滑断层连续梁桥为研究对象,利用混合模拟法合成该桥地面运动时程曲线,采用非一致激励时程法对其地震响应进行计算,并以断层穿越位置、穿越角度、墩高布置为分析参数,研究了上述参数对跨断层桥梁地震响应的影响。结果表明:①断层穿越位置、穿越角度、墩高布置方式对跨断层桥梁的地震响应具有显著影响,设计时应对此予以考虑。随着断层位置由桥梁中跨向边跨移动,其最不利地震响应呈增大趋势,结构受力偏向不利;当断层垂直穿过桥梁时,结构地震响应值相对较小,且分布合理性、经济性最优;跨断层桥梁横向最大弯矩需求并不一定发生在最高墩,而通常发生在断层同侧两个桥墩中的较高桥墩。②跨断层效应对桥梁结构的地震响应特征及规律影响显著,应对其进行针对性抗震设计。本文研究成果可为该类桥梁的抗震设计和桥位布置提供参考和依据。

关键词: 桥梁工程, 地震响应规律, 非一致激励, 跨断层桥梁

Abstract:

This paper presents a study on seismic response, which influences the Bridge Crossing Active Fault (BCAF). One bridge crossing strike-slip active fault is taken as an example. The seismic ground motions at the site of the bridge are generated following a hybrid simulation methodology. Multi-support excitation displacement input models and time history analysis method are used to calculate seismic response of the structures. The fault crossing position, crossing angle, arrangement of the pier are taken as the key parameters, and their influences on the seismic response are discussed. The results show that the fault crossing position, crossing angle, arrangement of the pier are important parameters influencing the seismic responses of the bridge, which shoul be taken into consideration in the design. With the change of the fault position from the mid-span to side-span of bridge, the most disadvantageous seismic response shows a trend of increase, being unfavorable to stress of the structure. When the fault perpendicularly crosses the bridge the seismic response caused by fault dislocation is minimal, and the optimal rationality and economy for piers internal force are presented. Generally, the demand of maximum transversal bending moment of BCAF does not necessarily occur at the highest pier, but on higher bent on the side of the fault with two bents. The structural response characteristics of the BCAF and the near fault bridge have significant influence, therefore should be paid particular attention in seismic design. The results in this research can be used as a reference to the seismic design and bridge location.

Key words: bridge engineering, influence of seismic response, multi-support excitations, bridges crossing active fault

中图分类号: 

  • U448

图1

桥位与断层关系示意图"

图2

断层两侧垂直断层方向和平行断层方向加速度、速度和位移时程"

图3

地震动反应谱"

图4

桥梁的有限元离散模型"

图5

地震动输入方向示意图"

图6

不同断层穿越位置计算示意图"

图7

各工况地震响应比较图"

图8

工况Case 1结构变形示意图"

图9

不同断层夹角计算模型"

图10

地震动转换示意图"

图11

墩底最不利弯矩随断层夹角的变化曲线"

图12

最不利位移响应随断层夹角的变化曲线"

图13

设计工况示意图"

图14

内力响应比较图"

图15

位移响应比较图"

[1] 惠迎新, 王克海, 李冲 . 跨断层地表破裂带桥梁震害研究及抗震概念设计[J]. 公路交通科技, 2014,31(10):145-151.
doi: 10.3969/j.issn.1002-0268.2014.10.009
Hui Ying-xin, Wang Ke-hai, Li Chong . Study of seismic damage and seismic conceptual design of bridges crossing fault-rupture zones[J]. Journal of Highway and Transportation Research and Development, 2014,31(10):145-151.
doi: 10.3969/j.issn.1002-0268.2014.10.009
[2] Park S W, Ghasemi H, Shen J , et al. Simulation of the seismic performance of the bolu viaduct subjected to near-fault ground motions[J]. Earthquake Engineering and Structural Dynamics, 2004,33:1249-1270.
doi: 10.1002/eqe.395
[3] Ucak A, Mavroeidis G P, Tsopelas P, et al. The response of the seismically isolated Bolu Viaduct subjected to fault crossing [C]//Structures Congress, ASCE, 2013: 817-826.
[4] Goel R K, Chopra A K . Linear analysis of ordinary bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering, 2009,4(3):203-215.
doi: 10.1590/S0104-11692009000200003
[5] Goel R K, Qu B, Tures J , et al. Validation of fault rupture-response spectrum analysis method for curved bridges crossing strike-slip fault rupture zones[J]. Journal of Bridge Engineering, 2014,19(5):06014002.
doi: 10.1061/(ASCE)BE.1943-5592.0000602
[6] Saiidi M, Vosooghi A, Choi H , et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering, 2014,19(8):182-190.
[7] 杨怀宇, 李建中 . 断层地震动对隔震桥梁地震响应的影响[J]. 同济大学学报:自然科学版, 2015,43(8):1144-1152.
doi: 10.11908/j.issn.0253-374x.2015.08.004
Yang Huai-yu, Li Jian-zhong . Response analysis of seismic isolated bridge under influence of fault-crossing ground motions[J]. Journal of Tongji University (Natural Science), 2015,43(8):1144-1152.
doi: 10.11908/j.issn.0253-374x.2015.08.004
[8] 沈建明 . 客运专线铁路跨越断裂带有关问题探讨[J]. 铁道工程学报, 2011,157(10):30-37.
doi: 10.3969/j.issn.1006-2106.2011.10.007
Shen Jian-ming . Study on relevant issues on passenger dedicated railway crossing fault zone[J]. Journal of Railway Engineering Society, 2011,157(10):30-37.
doi: 10.3969/j.issn.1006-2106.2011.10.007
[9] 帅少军, 戴万江, 罗嗣碧 . 跨断裂带桥梁设计研究[J]. 公路, 2016(4):127-130.
Shuai Shao-jun, Dai Wan-jiang, Luo Si-bi . Design Study of the bridges crossing fault[J]. Highway, 2016(4):127-130.
[10] 胡盛, 杨华振, 罗嗣碧 , 等. 海南铺前大桥总体设计[J]. 桥梁建设, 2016,46(1):94-99.
Hu Sheng, Yang Hua-zhen, Luo Si-bi , et al. Overall design of Puqian bridge in hainan[J]. Bridge Construction, 2016,46(1):94-99.
[11] 惠迎新, 王克海 . 基于多点激励位移输入模型的跨断层桥梁地震动输入方法研究[J]. 东南大学学报:自然科学版, 2015,45(3):557-562.
Hui Ying-xin, Wang Ke-hai . Earthquake motion input method for bridges crossing fault based on multi-support excitation displacement input model[J]. Journal of Southeast University (Natural Science), 2015,45(3):557-562.
[12] 惠迎新, 王克海 . 跨断层桥梁地震响应特性研究[J]. 桥梁建设, 2015,45(3):70-75.
Hui Ying-xin, Wang Ke-hai . Study of seismic response features of bridges crossing faults[J]. Bridge Construction, 2015,45(3):70-75.
[13] Somerville P. Characterizing near fault ground motion for the design and evaluation of bridges [C]//Proceedings of the 3rd National Seismic Conference and Workshop on Bridges and Highways, Portland, Oregon, 2002: 137-148.
[14] 田玉基, 杨庆山, 卢明奇 . 近断层脉冲型地震动的模拟方法[J]. 地震学报, 2007,29(1):77-84.
doi: 10.3321/j.issn:0253-3782.2007.01.009
Tian Yu-ji, Yang Qing-shan, Lu Ming-qi . Simulation method of near-fault pulse-type ground motion[J]. ACTA Seismological Sinica, 2007,29(1):77-84.
doi: 10.3321/j.issn:0253-3782.2007.01.009
[15] Makris N, Chang S P . Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures[J]. Earthquake Engineering and Structural Dynamics, 2000,29:85-107.
doi: 10.1002/(ISSN)1096-9845
[16] JTJ/T B02-01-2008. 公路桥梁抗震设计细则[S].北京: 人民交通出版社, 2008.
[17] Somerville P G . Magnitude scaling of the near-fault rupture directivity pulse[J]. Physics of the Earth and Planetary Interiors, 2003,137(1-4):201-212.
doi: 10.1016/S0031-9201(03)00015-3
[18] 田玉基, 杨庆山 . 地震地面运动作用下结构反应的分析模型[J]. 工程力学, 2005,22(6):170-174.
doi: 10.3969/j.issn.1000-4750.2005.06.029
Tian Yu-ji, Yang Qing-shan . Analysis models and methods for structural seismic responses[J]. Engineering Mechanics, 2005,22(6):170-174.
doi: 10.3969/j.issn.1000-4750.2005.06.029
[19] Pamuk A, Kalkan E, Ling H I . Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in turkey[J]. Soil Dynamics and Earthquake Engineering, 2005,25(7-10):581-589.
doi: 10.1016/j.soildyn.2004.11.011
[1] 李万恒,申林,王少鹏,赵尚传. 基于多阶段分区域动力测试的桥梁结构损伤评估[J]. 吉林大学学报(工学版), 2019, 49(3): 773-780.
[2] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[3] 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[4] 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[5] 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[6] 张云龙, 刘占莹, 吴春利, 王静. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[7] 曹珊珊, 雷俊卿. 考虑区间不确定性的钢结构疲劳寿命分析[J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[8] 谭国金, 刘子煜, 魏海斌, 王龙林. 偏心直线预应力筋简支梁自振频率计算方法[J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[9] 刘寒冰, 时成林, 谭国金. 考虑剪切滑移效应的叠合梁有限元解[J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[10] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665-670.
[11] 焦常科, 李爱群, 伍小平. 大跨双层斜拉桥多点激励地震响应[J]. , 2012, 42(04): 910-917.
[12] 辛大波, 王亮, 段忠东, 欧进萍, 李惠, 李忠华. 风雨联合作用下的桥梁主梁静力特性[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 174-179.
[13] 谭国金, 王龙林, 程永春. 基于灰色系统理论的寒冷地区斜拉桥索力状态预测方法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 170-173.
[14] 宫亚峰, 程永春, 焦峪波. 基于静力应变及遗传优化神经网络的城市立交桥梁损伤识别[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 164-169.
[15] 刘寒冰, 郑继光, 邹品德. 叠合式钢筋混凝土圆截面短柱偏心受压承载力计算[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘耀东, 李光玉, 连建设 . 铝掺杂氧化锌薄膜的电学及光学性能[J]. 吉林大学学报(工学版), 2007, 37(03): 495 -0498 .
[2] 许思传,李荣庆,程钦,郭英男,张纪鹏,孙济美,王永富 . 边界条件对乙醇HCCI发动机燃烧的影响[J]. 吉林大学学报(工学版), 2007, 37(01): 74 -78 .
[3] 杨文,石永久,王元清,施刚 . 结构钢焊接残余应力三维有限元分析[J]. 吉林大学学报(工学版), 2007, 37(02): 347 -0352 .
[4] 钱直睿,李明哲,孙刚,谭富星,金文姬 . 球形面多道次多点成形的数值模拟[J]. 吉林大学学报(工学版), 2007, 37(02): 338 -0342 .
[5] 程平,张海涛,高岩,李俊锋,王洪艳 . ANN在聚丙烯酸酯乳液性质预测中的应用
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[6] 张大庆;何清华;郝鹏;陈欠根 . 液压挖掘机铲斗轨迹跟踪的鲁棒控制[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[7] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] 李成,刘治华,张平 . 具有初始位移的两层转子结构复合材料储能飞轮的应力及位移分析[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .
[9] 史文库,洪哲浩,赵涛 . 汽车动力总成悬置系统多目标优化设计及软件开发
[J]. 吉林大学学报(工学版), 2006, 36(05): 654 -0658 .
[10] 宋雨来,刘耀辉,朱先勇,王素环,于思荣. 钕对AZ91镁合金组织及机械性能的影响[J]. 吉林大学学报(工学版), 2006, 36(03): 289 -0293 .