吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 133-140.doi: 10.13229/j.cnki.jdxbgxb20161241

• 论文 • 上一篇    下一篇

三跨独柱连续曲线梁桥抗倾覆稳定性分析

宫亚峰, 何钰龙, 谭国金, 申杨凡   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2016-11-18 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 谭国金(1981-),男,副教授,博士.研究方向:桥梁检测与加固.E-mail:tgj@jlu.edu.cn
  • 作者简介:宫亚峰(1977-),男,副教授,博士.研究方向:桥梁结构健康监测理论及应用.E-mail:gongyf@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51478203); 吉林省科技厅项目(20140520135H); 中央高校基本科研业务费专项资金项目

Anti-overturning stability analysis for three-span continuous curved girder bridge with single column pier

GONG Ya-feng, HE Yu-long, TAN Guo-jin, SHEN Yang-fan   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2016-11-18 Online:2018-02-26 Published:2018-02-26

摘要: 为研究三跨独柱连续曲线梁桥的抗倾覆能力,基于结构倾覆的力学原理并根据桥梁倾覆轴选取原则,推导了微弯桥与弯桥的倾覆轴选取临界方程,比较了弯桥中两类倾覆轴下的抗倾覆稳定性,对三跨独柱连续曲线梁桥的抗倾覆稳定系数进行了验算,并与规范公式计算值进行对比。计算结果表明:在选取弯桥倾覆轴时,根据两中墩支座连线作为倾覆轴进行抗倾覆验算的结果更安全;三跨独柱连续曲线梁桥的抗倾覆稳定系数随曲率半径增大呈现先减小后增大的趋势;对于微弯桥,理论计算值比规范计算值更大;对于弯桥,两者基本一致。

关键词: 桥梁工程, 独柱墩, 曲线梁桥, 抗倾覆稳定性, 曲率半径, 圆心角

Abstract: To study the stability of three-span continuous curved girder bridge with single column pier, the overturning axis critical equation of slightly curved bridge and curved bridge is deduced based on the mechanics principle of structure overturning and the selection principle of the bridge overturning axis. The anti-overturning stabilities of curved bridge under two types of overturning axis are compared. The anti-overturning stability coefficient of three-span continuous curved girder bridge with single column pier was checked and compared with the value calculated from standard formula. Calculation results show that, choosing the connecting line of the bearings of two middle piers as the overturning axis, the check is safer. The anti-overturning stability coefficient of the three-span continuous curved girder bridge with single column pier first decreases and then increases with the increase in the curvature radius. For slightly curved bridge, the theoretical calculated value is greater than the value calculated from the standard formula. For curved bridge, both calculated values are basically identical.

Key words: bridge engineering, single column pier, curved girder bridge, anti-overturning stability, radius of curvature, central angle

中图分类号: 

  • U441.2
[1] Xu F Y, Zhang M J, Wang L, et al.Recent highway bridge collapses in China: review and discussion[J]. Journal of Performance of Constructed Facilities, 2016, 30(5):1-6.
[2] Zhu S, Levinson D, Liu H X, et al.The traffic and behavioral effects of the I-35W Mississippi River bridge collapse[J]. Transportation Research Part A: Policy & Practice, 2008, 44(44):771-784.
[3] Kim E S, Kim J H.Evaluation of the structure stability of a plate girder bridge using MIDAS structure analysis[J]. Transactions of the Korean Society of Mechanical Engineers A, 2014, 38(4):451-457.
[4] Michaltsos G T, Raftoyiannis I G.A mathematical model for the rocking, overturning and shifting problems in bridges[J]. Engineering Structures, 2008, 30(12):3587-3594.
[5] 周子杰,阮欣,石雪飞. 梁桥横向稳定验算中倾覆轴的选取[J].重庆交通大学学报:自然科学版,2013,32(5):907-910.
Zhou Zi-jie, Ruan Xin, Shi Xue-fei.Selection of overturning axis in lateral stability calculation of girder bridge[J]. Journal of Chongqing Jiaotong University (Natural Science), 2005,32(5):907-910.
[6] 曹景,刘志才,冯希训. 箱形截面直线桥及曲线桥抗倾覆稳定性分析[J].桥梁建设,2014,44(3):69-74.
Cao Jing, Liu Zhi-cai, Feng Xi-xun.Analysis of overturning stability of straight and curved bridges with box sections[J]. Bridge Construction, 2014, 44(3): 69-74.
[7] 陈瑶,陈露晔,张建华. 独柱墩桥梁抗倾覆稳定验算方法及参数影响分析[J].浙江交通职业技术学院学报,2013,14(3):1-6.
Chen Yao, Chen Lu-ye, Zhang Jian-hua.Calculation method of anti-overturning stability and analysis of influence of parameters on single column bridge[J]. Journal of Zhejiang Institute of Communications, 2013, 14(3): 1-6.
[8] 彭卫兵,徐文涛,陈光军,等. 独柱墩梁桥抗倾覆承载力计算方法[J]. 中国公路学报,2015,28(3):66-72.
Peng Wei-bing, Xu Wen-tao, Chen Guang-jun, et al.Calculation method for anti-overturning capacity of single column pier girder bridge[J]. China Journal of Highway and Transport, 2015, 28(3):66-72.
[9] 梁峰. 三跨独柱连续梁桥抗倾覆能力研究[J].公路,2009(10):40-43.
Liang Feng.Research on the anti-overturning ability of three-span continuous girder bridge with single column pier[J]. Highway, 2009(10): 40-43.
[10] JTG D62-2012. 公路钢筋混凝土及预应力混凝土桥涵设计规范(征求意见稿)[S].JTG D60-2015. 公路桥涵设计通用规范[S].
[1] 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734.
[2] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[3] 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[4] 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[5] 张云龙, 刘占莹, 吴春利, 王静. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[6] 曹珊珊, 雷俊卿. 考虑区间不确定性的钢结构疲劳寿命分析[J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[7] 谭国金, 刘子煜, 魏海斌, 王龙林. 偏心直线预应力筋简支梁自振频率计算方法[J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[8] 刘寒冰, 时成林, 谭国金. 考虑剪切滑移效应的叠合梁有限元解[J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665-670.
[10] 焦常科, 李爱群, 伍小平. 大跨双层斜拉桥多点激励地震响应[J]. , 2012, 42(04): 910-917.
[11] 辛大波, 王亮, 段忠东, 欧进萍, 李惠, 李忠华. 风雨联合作用下的桥梁主梁静力特性[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 174-179.
[12] 谭国金, 王龙林, 程永春. 基于灰色系统理论的寒冷地区斜拉桥索力状态预测方法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 170-173.
[13] 宫亚峰, 程永春, 焦峪波. 基于静力应变及遗传优化神经网络的城市立交桥梁损伤识别[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 164-169.
[14] 刘寒冰, 郑继光, 邹品德. 叠合式钢筋混凝土圆截面短柱偏心受压承载力计算[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
[15] 姜浩1,2, 郭学东2, 张艳辉2. 基于时域分析的风载激励下桥梁结构动力特性识别[J]. 吉林大学学报(工学版), 2011, 41(05): 1279-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 尼颖升, 孙启鑫, 马晔, 徐栋. 基于拉应力域的波形钢腹板组合梁承载力配筋计算[J]. 吉林大学学报(工学版), 2018, 48(1): 148 -158 .
[2] 尼颖升,孙启鑫,马晔,徐栋,刘超. 基于空间网格分析的多箱室波形钢腹板组合梁腹板剪力分配[J]. 吉林大学学报(工学版), 2018, 48(6): 1735 -1746 .