1 | 王方石, 王坚, 李兵, 等 . 基于深度属性学习的交通标志检测[J]. 吉林大学学报:工学版, 2018, 48(1): 319-329. | 1 | Wang Fang-shi , Wang Jian , Li Bing , et al . Deep attribute learning based traffic sign detection[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(1): 319-329. | 2 | 李琳辉,伦智梅,连静,等 . 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报:工学版,2017,47(2):384-391. | 2 | Li Lin-hui , Zhi-mei Lun , Lian Jing , et al . Convolution neural network-based vehicle detection method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 384-391. | 3 | Wang Zhi-peng , Xiang Xuan-lu , Zhao Zhi-cheng , et al . Deep image retrieval: indicator and gram matrix weighting for aggregated convolutional features[C]∥2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 2018: 1-6. | 4 | Xia Zhi-hua , Wang Xin-hui , Zhang Lian-gao , et al . A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing[J]. IEEE Transactions on Information Forensics & Security, 2016, 11(11): 2594-2608. | 5 | 刘富, 宗宇轩, 康冰, 等 . 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报:工学版, 2018, 48(6): 1844-1850. | 5 | Liu Fu , Zong Yu-xuan , Kang Bing , et al . Dorsal hand vein recognition system based on optimized texture features[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1844-1850. | 6 | Wang J , Song Y , Leung T , et al . Learning fine-grained image similarity with deep ranking[C]∥Computer Vision and Pattern Recognition, Columbus, OH, 2014: 1386-1393. | 7 | Hadsell R , Chopra S , LeCun Y . Dimensionality reduction by learning an invariant mapping[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 2006: 1735-1742. | 8 | Radenovi? F , Tolias G , Chum O . Fine-tuning CNN image retrieval with no human annotation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1655-1668. | 9 | Krizhevsky A , Sutskever I , Hinton G E . Imagenet classification with deep convolutional neural networks[J/OL]. [2018-10-10].https:∥iphysresearch.github.io/paper_summary/ImageNet%20Classification%20with%20Deep%20Convolutional%20Neural%20Networks.pdf. | 10 | Simonyan K , Zisserman A . Very deep convolutional networks for large-scale image recognition[J/OL].[2018-10-10]. https:∥. | 11 | He K , Zhang X , Ren S , et al . Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 770-778. | 12 | Razavian A S , Sullivan J , Carlsson S , et al . Visual instance retrieval with deep convolutional networks[J]. ITE Transactions on Media Technology and Applications, 2016, 4(3): 251-258. | 13 | Babenko A , Lempitsky V . Aggregating deep convolutional features for image retrieval[J/OL].[2018-10-11].https:∥arxiv.org/pdf/ 1510.07493.pdf. | 14 | Luukka P , Lepp?lampi T . Similarity classifier with generalized mean applied to medical data[J]. Computers in Biology and Medicine, 2006, 36(9): 1026-1040. | 15 | Philbin J , Chum O , Isard M , et al . Lost in quantization: Improving particular object retrieval in large scale image databases[J/OL]. [2018-10-15].http:∥. | 16 | Kingma D P , Ba J l . Adam: a method for stochastic optimization[J/OL].[2018-10-11]. https:∥arxiv.org/pdf/ 1412.6980.pdf. | 17 | Donahue J , Jia Y , Vinyals O , et al . DeCAF: a deep convolutional activation feature for generic visual recognition[J]. International Conference on Machine Learning, 2013, 32: 647-655. | 18 | Philbin J , Chum O , Isard M , et al . Object retrieval with large vocabularies and fast spatial matching[C]∥2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007: 9738061. | 19 | Jégou H , Zisserman A . Triangulation embedding and democratic aggregation for image search[J/OL].[2018-10-09]. https:∥. | 20 | Babenko A , Slesarev A , Chigorin A , et al . Neural codes for image retrieval[J/OL].[2018-10-09]. https:∥arxiv.org/pdf/ 1404.1777.pdf. | 21 | Sharif R A , Sullivan J , Maki A , et al . A baseline for visual instance retrieval with deep convolutional networks[C]∥International Conference on Learning Representations, San Diego, CA, 2015:165765. | 22 | Ng J Y H , Yang F , Davis L S . Exploiting local features from deep networks for image retrieval[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 2015: 53-61. | 23 | Paulin M , Douze M , Harchaoui Z , et al . Local convolutional features with unsupervised training for image retrieval[C]∥Proceedings of the IEEE International Conference on Computer vision, Santiago, Chile, 2015: 91-99. |
|