1 | 孙旭, 李晓光, 李嘉锋, 等 . 基于深度学习的图像超分辨率复原研究进展[J]. 自动化学报, 2017, 43(5): 697-709. | 1 | Sun Xu , Li Xiao-guang , Li Jia-feng , et al . Review on deep learning based image super-resolution restoration algorithms[J]. Acta Automatica Sinica, 2017, 43(5): 697-709. | 2 | Yang J C , Wright J , Huang T S , et al . Image super-resolution as sparse representation of raw image patches[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1-8. | 3 | Yang J C , Wright J , Huang T S , et al . Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. | 4 | 卜莎莎,章毓晋 . 基于局部约束线性编码的单帧和多帧图像超分辨率重建[J]. 吉林大学学报:工学版, 2013, 43(增刊1): 365-370. | 4 | Bu Sha-sha , Zhang Yu-jin . Single-frame and multi-frame image super-resolution based on locality-constrained linear coding[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(Sup.1): 365-370. | 5 | Timofte R , de Smet V , van Gool L . A+: adjusted anchored neighborhood regression for fast super-resolution[C]∥Asian Conference on Computer Vision, Springer, Cham, 2014: 111-126. | 6 | Yang C Y , Yang M H . Fast direct super-resolution by simple functions[C]∥IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 2013: 561-568. | 7 | Schulter S , Leistner C , Bischof H . Fast and accurate image upscaling with super-resolution forests[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3791-3799. | 8 | Dong C , Loy C C , He K , et al . Learning a deep convolutional network for image super-resolution[C]∥European Conference on Computer Vision, Springer, Cham, 2014: 184-199. | 9 | Dong C , Loy C C , Tang X . Accelerating the super-resolution convolutional neural network[C]∥European Conference on Computer Vision, The Netherlands, 2016: 391-407. | 10 | He K , Zhang X , Ren S , et al . Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. | 11 | Huang G , Liu Z , Weinberger K , et al . Densely connected convolutional networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Hawaii, USA, 2017: 2261-2269. | 12 | Chen Y , Li J , Xiao H , et al . Dual path networks[C]∥Advances in Neural Information Processing Systems, Cambridge, USA, 2017: 4470-4478. | 13 | Zhang Y , Tian Y , Kong Y , et al . Residual dense network for image super-resolution[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018:2472-2481. | 14 | Huang Y , Qin M . Densely connected high order residual network for single frame image super resolution[J]. arXiv preprint arXiv: 1804.05902, 2018:1-8. | 15 | 徐冉, 张俊格,黄凯奇 . 利用双通道卷积神经网络的图像超分辨率算法[J]. 中国图象图形学报, 2016, 21(5): 556-564. | 15 | Xu Ran , Zhang Jun-ge , Huang Kai-qi . Image super-resolution using two-channel convolutional neural networks[J]. Journal of Image and Graphics, 2016, 21(5): 556-564. | 16 | Kim J , Kwon Lee J , Mu Lee K . Accurate image super-resolution using very deep convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646-1654. | 17 | Lai W S , Huang J B , Ahuja N , et al . Deep laplacian pyramid networks for fast and accurate super-resolution[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, USA, 2017: 5835-5843. | 18 | Tong T , Li G , Liu X , et al . Image super-resolution using dense skip connections[C]∥IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 4809-4817. | 19 | Yang J , Wright J , Huang T S , et al . Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. | 20 | Timofte R , Agustsson E , van Gool L , et al . Ntire 2017 challenge on single image super-resolution: Methods and results[C]∥IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, USA, 2017:1110-1121. | 21 | He K , Zhang X , Ren S , et al . Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]∥IEEE International Conference on Computer Vision,Santiago, Chile, 2015: 1026-1034. |
|