吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (3): 515-524.doi: 10.13229/j.cnki.jdxbgxb20200822

• 车辆工程·机械工程 • 上一篇    

新型弓腰式移动底盘的设计及通过性分析

聂建军1(),闫修鹏1,2,马宗正2,解晓琳3,郭家杰3,吕亚磊1   

  1. 1.中原工学院 机电学院,郑州 451191
    2.河南工程学院 机械工程学院,郑州 451191
    3.河南科技大学 农业装备工程学院,河南 洛阳 471000
  • 收稿日期:2020-10-27 出版日期:2022-03-01 发布日期:2022-03-08
  • 作者简介:聂建军(1971-),男,副教授,博士. 研究方向:现代设计理论与方法. E-mail:jjnie311@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(51905154)

Design and trafficability analysis of new bow waist mobile chassis

Jian-jun NIE1(),Xiu-peng YAN1,2,Zong-zheng MA2,Xiao-lin XIE3,Jia-jie GUO3,Ya-lei LYU1   

  1. 1.School of Mechatronics Engineering,Zhongyuan University of Technology,Zhengzhou 451191,China
    2.School of Mechanical Engineering,Henan University of Engineering,Zhengzhou 451191,China
    3.College of Agricultural Equipment Engineering,Henan University of Science and Technology,Luoyang 471000,China
  • Received:2020-10-27 Online:2022-03-01 Published:2022-03-08

摘要:

针对狭窄的丘陵山地耕作环境,设计了一种新型弓腰式移动底盘。该底盘的履带驱动装置能够被动自适应地形变化,亦能主动调整履带与地面的接触角度,提高履带的附着性能。首先,阐述了该移动底盘的机构设计和传动原理。其次,探究了履带在松软路面上行驶时土壤阻力和附着力大小的影响因素,分析了姿态变化与越障高度的关系,得到了该底盘在弓腰姿态时能够达到的最大越障垂直高度为241.53 mm。再次,通过纵向爬坡稳定性分析和折腰转向过程的几何分析,计算出最大爬坡度为41.23°、最小转向半径为1.297 m。最后,通过越障和机动性能试验验证了理论分析的可靠性。结果表明,所设计的底盘改变姿态后越障性能提高,具有较好的纵坡稳定性和灵活的机动性,能够满足复杂耕作环境中的作业需求,在农业、林业等领域具有广阔的应用前景。

关键词: 行走底盘, 折腰转向, 爬坡, 最小转向半径

Abstract:

Aiming at the narrow hilly farming environment, a new type of bow waist intelligent mobile chassis was designed. The crawler driving device of the intelligent chassis can passively adapt to the terrain change, and can actively adjust the contact angle between the track and the ground to improve the adhesion performance of the track. The mechanism design and transmission principle of the mobile chassis are described in detail. On this basis, the influence factors of soil resistance and adhesion were explored when the track was driving on soft road and the relationship between the attitude change and obstacle crossing height is analyzed. The maximum vertical height of obstacle crossing that the chassis can reach in the bowed posture is 241.53 mm. Through the analysis of longitudinal climbing stability and geometric analysis of the turning process, the maximum climbing degree is 41.23° and the minimum turning radius is 1.297 m. Finally, the reliability of the theoretical analysis is verified through obstacle crossing and maneuverability tests. The results show that the designed chassis improves obstacle crossing performance after changing its attitude, and has good longitudinal slope stability and flexible maneuverability. It can meet the operation requirements in complex farming environment, and has broad application prospects in agriculture, forestry and other fields.

Key words: walking chassis, bending steering, climbing, minimum turning radius

中图分类号: 

  • TP242.3

表1

履带底盘相关参数"

序号名称符号参数
1整车质量/kgm160
2整车尺寸/mm-1850×650×710
3发动机最大功率/kWpe4.0
4主减速比i39
5最大爬坡度/(°)β35
6最小转弯半径/mmR1500
7最小越障高度/mmH220
8最大转向转角/(°)γ38

图1

履带底盘结构设计原理图"

图2

履带牵引组件"

图3

底盘动力传递原理图"

图4

辅助提升装置"

图5

履带接地上各点土壤的剪切变形"

图6

越障时履带牵引组件的变化状态"

图7

弓腰式履带底盘的结构参数"

图8

底盘越障过程中质心变化的位置示意"

表2

履带底盘结构参数"

参数数值参数数值参数数值
a0/mm145t0/mm35r0/mm160
a1/mm395t1/mm40r1/mm130
h0/mm125L/mm142r2/mm65
h1/mm145d0/mm815
h2/mm5.5θ1/(°)-60~30

图9

质心坐标与角度和质量之间的关系"

图10

越障过程中的极限状态"

图11

台阶的高度与底盘姿态的关系"

图12

移动底盘的爬坡过程力学模型"

图13

发动机输出扭矩与坡度角的关系"

图14

转向示意图"

图15

转向角度和转向支点位置与转向半径的关系"

图16

弓腰式履带底盘"

表3

弓腰式履带底盘基本参数"

序号名称参数
1整车质量/kg152
2整车尺寸/mm1850×650×710
3发动机最大功率/kW4.0
4主减速比39
5轮胎半径/mm160
6驱动轮半径/mm130
7轴距/mm815
8最大转角/(°)38

图17

越障与转向功能测试"

1 崔思远, 金雪婷, 曹光乔. 我国丘陵山区农机化水平影响因素及区划研究-基于全国丘陵山区238个县(市)的调研数据中国农业资源与区划[J]. 中国农业资源与区划, 2018, 39 (11): 129-134.
Cui Si-yuan, Jin Xue-ting, Cao Guang-qiao. Study on the factors affecting the level of agricultural mechanization and regional division in hilly and mountainous areas of China—based on 238 counties (cites) investigations in hilly and mountainous areas[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(11): 129-134.
2 Wang Y J, Yang F Z, Pan G T, et al. Design and testing of a small remote-control hillside tractor[J]. Transactions of the ASABE, 2014, 57(2): 363-370.
3 刘妤, 张拓, 谢铌, 等. 小型农用履带底盘多体动力学建模及验证[J]. 农业工程学报, 2019, 35(7): 39-46.
Liu Yu, Zhang Tuo, Xie Ni, et al. Multi-body dynamic modeling and verification of small agricultural crawler chassis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 39-46.
4 李江, 王玉亮, 李瑞川, 等. 丘陵山地四轮驱动拖拉机驱动力主动分配系统研究[J]. 农机化研究, 2019, 41(8):227-235.
Li Jiang, Wang Yu-liang, Li Rui-chuan, et al. Research on driving force allocation system of four wheel drive tractor in hilly area[J]. Journal of Agricultural Mechanization Research, 2019, 41(8):227-235.
5 潘冠廷, 杨福增, 孙景彬, 等. 小型山地履带拖拉机爬坡越障性能分析与试验[J]. 农业机械学报, 2020, 51(9): 374-383.
Pan Guan-ting, Yang Fu-zeng, Sun Jing-bin, et al. Analysis and test of the obstacle negotiation performance of a small hillside crawler tractor during climbing process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 374-383.
6 彭贺, 马文星, 王忠山, 等. 丘陵山地拖拉机车身调平控制仿真分析与试验[J]. 吉林大学学报:工学版, 2019, 49(1): 157-165.
Peng He, Ma Wen-xing, Wang Zhong-shan, et al. Control system of self-leveling in hilly tractor body through simulation and experiment[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 157-165.
7 丛茜, 徐金, 马博帅, 等. 基于虚拟仿真的拖拉机后悬挂检测装置设计与实验[J]. 吉林大学学报: 工学版, 2021, 51(2): 754-760.
Cong Qian, Xu Jin, Ma Bo-shuai, et al. Design and test of tractor hydraulic suspension system testing device based on virtual simulation[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 754-760.
8 Gao Q M, Gao F, Tian L, et al. Design and development of a variable ground clearance, variable wheel track self-leveling hillside vehicle power chassis (V2-HVPC)[J]. Journal of Terramechanics, 2014, 56: 77-90.
9 吴永栓, 孙晨阳, 周学剑, 等. 小型履带自走式电动多功能作业平台的设计及试验[J]. 湖南农业大学学报: 自然科学版, 2019, 45(6): 664-668.
Wu Yong-shuan, Sun Chen-yang, Zhou Xue-jian, et al. Design and test of the small size crawler-type self-propelled electric multifunctional operation platform[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2019,45(6): 664-668.
10 谢铌. 小型山地履带底盘坡地行驶性能分析与试验研究[D]. 重庆:重庆理工大学机械工程学院, 2020.
Xie Ni. Analysis and experimental study on the running performance of the small crawler chassis for mountain on slope[D]. Chongqing: Institute of Mechanical Engineering, Chongqing University of Technology, 2020.
11 赵建柱, 王枫辰, 于斌, 等. 农用仿形履带式动力底盘设计与试验[J]. 农业机械学报: 2014, 45(9): 20-24.
Zhao Jian-zhu, Wang Feng-chen, Yu Bin, et al. Research on all terrain profiling crawler power chassis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 20-24.
12 刘平义, 王振杰, 李海涛, 等. 行星履带式农用动力底盘设计与越障性能研究[J]. 农业机械学报, 2014, 45():17-23.
Liu Ping-yi, Wang Zhen-jie, Li Hai-tao, et al. Design and overcoming obstacles ability research of tracked driving chassis with planetary structure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(Sup.1):17-23.
13 王川伟, 马琨, 杨林, 等. 四摆臂-六履带机器人单侧台阶障碍越障仿真与试验[J]. 农业工程学报, 2018, 34(10): 46-53.
Wang Chuan-wei, Ma Kun, Yang Lin, et al. Simulation and experiment on obstacle surmounting performance of four swing arms and six tracked robot under unilateral step environment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(10): 46-53.
14 张明路, 李敏, 田颖, 等. 单履带被动自适应机器人设计与运动学分析[J]. 华中科技大学学报: 自然科学版, 2018, 46(3): 69-74.
Zhang Ming-lu, Li Min, Tian Ying, et al. Design and kinematics analysis of single crawler wheel-track compound passive adaptive mobile robot[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(3): 69-74.
15 齐文超, 李彦明, 陶建峰, 等. 丘陵山地拖拉机姿态主动调整系统设计与实验[J]. 农业机械学报, 2019, 50(7): 381-388.
Qi Wen-chao, Li Yan-ming, Tao Jian-feng, et al. Design and experiment of active attitude adjustment system for hilly area tractors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 381-388.
16 彭贺, 马文星, 赵恩鹏, 等. 丘陵山地轮式拖拉机车身调平系统设计与物理模型试验[J]. 农业工程学报, 2018, 34(14): 36-44.
Peng He, Ma Wen-xing, Zhao En-peng, et al. Design and physical model experiment of body leveling system for roller tractor in hilly and mountainous region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 36-44.
17 金诚谦, 杨腾祥, 刘岗微, 等. 履带式联合收获机全向调平底盘设计与试验[J]. 农业机械学报, 2020, 51(11): 393-402.
Jin Cheng-qian, Yang Teng-xiang, Liu Gang-wei, et al. Design and test of posture controlled chassis for caterpillar combine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 393-402.
18 魏楷峰. 基于DEM-MBD双向耦合的履带车辆松软地面转向阻力研究[D]. 长春: 吉林大学生物与农业工程学院, 2020.
Wei Kai-feng. Research on steering resistance of tracked vehicle on soft ground based on DEM-MBD simulation[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2020.
19 余志生.汽车理论 [M].6版. 北京:机械工业出版社, 2019.
20 李雨潭, 朱华, 高志军, 等. 履带机器人通用地面力学模型分析与底盘设计[J]. 哈尔滨工程大学学报, 2015, 36(8): 1126-1130.
Li Yu-tan, Zhu Hua, Gao Zhi-jun, et al. A universal terramechanics model and the chassis design of a tracked robot[J]. Journal of Harbin Engineering University, 2015, 36(8): 1126-1130.
21 Gao F, Zeng W, Jiang H, et al. Design and terrainability analysis of a novel mobile robot with variable-diameter wheels[C]∥Proceedings of International Conference on Energy, Power and Mechanical Engineering, Guangzhou, China, 2019: 135-143.
[1] 赵伟, 孙汉旭, 贾庆轩, 张延恒, 于涛. 具有两种运动模式的球形机器人动力学建模与设计[J]. 吉林大学学报(工学版), 2013, 43(05): 1386-1394.
[2] 贺辉, 宋大凤, 杨南南, 雷雨春, 曾小华, 聂利卫, 王继新. 轮毂马达液驱系统控制与仿真[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!