吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 1091-1097.doi: 10.7964/jdxbgxb201304039
刘传辉1, 王红星1,2, 张磊1, 刘锡国1,2
LIU Chuan-hui1, WANG Hong-xing1,2, ZHANG Lei1, LIU Xi-guo1,2
摘要:
以提高带通椭圆球面波函数(BPSWF)重构求解精度为出发点,提出一种快速收敛的BPSWF函数重构求解算法。根据采样定理,由采样信号重构恢复带通信号的带通滤波选择本质,给出基于采样定理的带通椭圆球面波函数重构求解通式;分析了重构求解算法的主要误差因素,提出通过改善重构基函数收敛性,提高BPSWF函数重构求解精度的基本思想;通过频域设计构造了一种时域快速收敛的带通PSWF重构基函数,进而提出一种快速收敛的BPSWF函数重构求解算法。理论和仿真分析结果表明:新重构的求解方法更适合于低频段BPSWF求解,与sinc基函数重构求解方法相比,求解精度高,求得的PSWF函数正交性好,能量聚集性佳。
中图分类号:
[1] 刘锡国. 基于椭圆球面波函数的非正弦时域正交调制技术研究. 烟台:海军航空工程学院, 2011. Liu Xi-guo. Nonsinusoidal orthogonal modulation technology in time domain based on PSWF. Yantai:Naval Aeronatutical and Astronautical University, 2011.[2] Slepian D, Pollak H O. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I[J]. The Bell System Technical Journal, 1961, 40(1): 43-46.[3] Slepian D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: the discrete case. The Bell System Technical Journal,1978: 1371-1430.[4] Abderrazek K, Tahar M. New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues[J]. Applied and Computational Harmonic Analysis,2008(24): 269-289.[5] Gilbert G W, Shen X P. Wavelets based on prolate spheroidal wave functions[J]. The Journal of Fourier Analysis and Applications, 2004(10): 1-26.[6] Wei Li-ying, Kennedy Rodney A, Lamahewa Tharaka A. An optimal basis of band-limited functions for signal analysis and design[J]. IEEE Transactions on Signal Processing, 2011,58(11):5744- 5755.[7] Lindquist Martin A, Zhang Cun-hui, Glover Gary,et al. A generalization of the two-dimensional prolate spheroidal wave function method for nonrectilinear MRI data acquisition methods[J]. IEEE Transactions on Image Processing, 2006,15(9): 2792-2804.[8] Zhao Hui, Ran Qi-wen, Ma Jing, et al. Generalized prolate spheroidal wave functions associated with linear canonical transform[J]. IEEE Transactions on Signal Processing, 2010, 58(6):3032-3041.[9] Pei Soo-chang, Ding Jian-jun. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms[J]. J Opt Soc Am A, 2005, 22(3):460-474.[10] Cirpan Bahattin Karakaya Hakan A, Arslan Hüseyin, Can Azime. Slepian based channel interpolation for LTE uplink system with high mobility//IEEE Globecom Workshop on Broadband Single Carrier and Frequency Domain Communications, 2010:1307-1311.[11] Tugnait Jitendra K, He Shuang-chi. Multiuser/MIMO doubly selective fading channel estimation using superimposed training and Slepian sequences[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1341-1351.[12] Tran Le Chung, Mertins A. Space-time-frequency code implementation in MB-OFDM UWB communications: design criteria and performance[J]. IEEE Trans on Wireless Comm, 2009, 8(2): 701-713.[13] Claudio Sacchi, Tommaso Rossi, Marina Ruggieri, et al. Efficient waveform design for high-bit-rate W-band satellite transmissions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011,47(2): 974-995.[14] 王红星, 赵志勇, 刘锡国,等. 非正弦时域正交调制方法. 中国,ZL 200810159238.3, 2009.[15] 赵志勇, 王红星, 刘锡国,等. 基于PSWF的非正弦时域正交调制信号的同步方法[J]. 电子与信息学报, 2010, 32(11): 2588-2592. Zhao Zhi-yong, Wang Hong-xing, Liu Xi-guo, et al. Synchronization method based on auxiliary sequence for nonsinusoidal orthogonal modulation signal in time domain[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2588-2592.[16] 王红星, 刘锡国, 赵志勇, 等. 基于三值编码的非正弦时域正交调制方法[J]. 电子与信息学报, 2011, 33(8): 2003-2007. Wang Hong-xing, Liu Xi-guo, Zhao Zhi-yong, et al. A method of nonsinusoidal orthogonal modulation in time domain based on ternary coding[J]. Journal of Electronics & Information Technology, 2011, 33(8): 2003-2007.[17] Hong Xiao, Rokhlin V, Yarvin N. Prolate spheroidal wave functions, quadrature and interpolation[J]. Inverse Problems, 2001,17: 805-838.[18] Halpern P H. Optimum finite duration Nyquist signals[J]. IEEE Transactions on Communications, 1979(27): 884-888.[19] Kedar K, Nicholas G. Sampling theory approach to prolate spheroidal wavefunctions[J]. Journal of Physics,2003, 36: 10011-10021.[20] Kedar K. Bandpass sampling and bandpass analogues of prolate spheroidal functions[J]. Signal Processing, 2006(86): 1550-1558.[21] 王红星, 刘锡国, 赵志勇,等. 椭圆球面波函数的快速重构算法[J]. 电波科学学报, 2011, 26(4): 765-770. Wang Hong-xing, Liu Xi-guo, Zhao Zhi-yong, et al. Fast method of reconstructing prolate spheroidal wave function[J]. Chinese Journal of Radio Science, 2011, 26(4): 765-770.[22] Parr B, Cho B, Wallace K. A novel ultra-wideband pulse design algorithm[J]. IEEE Communication Letters, 2003, 7(5): 219-221.[23] Kedar K, Nicholas G. Direct sampling and demodulation of carrier-frequency signals[J]. Optics Communications, 2002, 211: 85-94. |
[1] | 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886. |
[2] | 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264. |
[3] | 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273. |
[4] | 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281. |
[5] | 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304. |
[6] | 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609. |
[7] | 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617. |
[8] | 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624. |
[9] | 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258. |
[10] | 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289. |
[11] | 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294. |
[12] | 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300. |
[13] | 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305. |
[14] | 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925. |
[15] | 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932. |
|