›› 2012, Vol. ›› Issue (03): 672-676.

• 论文 • 上一篇    下一篇

碳纤维增强摩擦材料的摩擦表面层

关庆丰, 万明珍, 邹阳, 蔡杰, 陈康敏   

  1. 江苏大学 材料科学与工程学院, 江苏 镇江 212013
  • 收稿日期:2011-06-13 出版日期:2012-05-01
  • 基金资助:
    国家自然科学基金项目(50671042);江苏大学科技创新团队及高级人才基金项目(07JDG032).

Friction surface layer of carbon fiber reinforced friction material

GUAN Qing-feng, WAN Ming-zhen, ZOU Yang, CAI Jie, CHEN Kang-min   

  1. School of Materials and Engineering, Jiangsu University, Zhenjiang 212013, China
  • Received:2011-06-13 Online:2012-05-01

摘要: 利用D-MS摩擦磨损试验机研究了碳纤维增强摩擦材料的摩擦磨损性能,并利用扫描电镜和能谱仪对其表面结构和微区成分进行了观察和测定,对热重分析试验的结果和摩擦磨损性能试验的结果进行了分析。结果表明:碳纤维摩擦材料在100~300 ℃内随温度升高摩擦磨损性能无明显降低,摩擦因数有所提高。碳纤维摩擦材料摩擦表面可分为富铁层、热力疏松层、变形强化层三层。摩擦表面工作层对材料表面获得稳定的摩擦磨损性能起重要作用。碳纤维的高导热性对材料的摩擦表面层结构有重要影响,它有利于减少热影响表面层深度,在本试验条件下,摩擦热影响表面层的深度约为0.55 mm。

关键词: 摩擦材料, 碳纤维, 摩擦表面层, 富铁层

Abstract: The friction and wear behaviors of the carbon fiber reinforced friction material (CFRFM) were investigated using a D-MS tester. The microstructures and constitutions of the CFRFM surface layer were measured using scanning electronic microscope and energy dispersive spectroscopy respectively; and their influence factors were analyzed according to the experiment results of thermo gravimetric analysis and tribological properties. The experimental results showed that the tribological properties of CFRFM do not reduce evidently, and friction coefficient has a small amount of increase during temperature rising from 100 to 300 ℃. The surface of CFRFM consists of three layers: iron-rich layer, which plays an important role in improving tribological properties of the material surface, thermodynamic loosened layer, and deformation reinforced layer. High heat conductivity, favorable to decrease the depth of the heat affected layer on the friction surface, has an important effect on the surface structure of CFRFM, under present experimental conditions, the depth of the heat affected layer is about 0.55 mm.

Key words: friction materials, carbon fiber, friction surface, iron-rich layer

中图分类号: 

  • TQ342.7
[1] Podratzky A, Bansemir H. Design and experimental characterization of modern helicopters rotor brakes[J]. Aero Sci Technol, 2007, 11: 360-369.
[2] Atzeni E, Iuliano L. Experimental study on grinding of a sintered friction material[J]. J Mater Proc Technol, 2008, 196: 184-189.
[3] Ma Y, Martynkova G S, Valaskova M, et al. Effects of ZrSiO4 in non-metallic brake friction materials on friction performance[J]. Tribol Int, 2007, 41: 1-9.
[4] Mohanty S, Chugh Y P. Development of fly ash-based automotive brake lining[J]. Tribol Int, 2007, 40: 1217-1224.
[5] Jacko M G, Tsang P H S, Rhee S K. Automotive friction materials evolution during the past decade[J]. Wear, 1984, 100: 503-515.
[6] Fan S, Zhang L, Xu Y, et al. Microstructure and properties of 3D needle-punched carbon/silicon carbide brake materials[J]. Compos Sci Technol, 2007, 67: 2390-2398.
[7] Guan Q F, Li G Y, Wang H Y, et al. Friction-wear characteristics of carbon fiber reinforced friction material[J]. J Mater Sci, 2004, 39: 641-643.
[8] Cheng D Q, Wang X T, Zhu J, et al. Friction and wear behavior of carbon fiber reinforced brake materials[J]. Front Mater Sci China, 2009, 3 (1): 56-60.
[9] 关庆丰,李光玉,李晓宇,等. 碳纤维对增强的摩阻材料的摩擦磨损特性的影响[J]. 吉林工业大学自然科学学报, 1997, 27(3): 73-77. Guan Qing-feng, Li Guang-yu, Li Xiao-yu, et al. Influence of carbon fiber in friction materials on wear resistance[J]. Journal of Jilin University of Technology, 1997, 27(3): 73-77.
[10] 费杰,李贺军,付业伟,等. 增强纤维对纸基 摩擦材料性能的影响[J].润滑密封, 2010, 35(10): 1-3. Fei Jie, Li He-jun, Fu Ye-wei, et al. Effect of reinforced fiber on the performance of paper-based friction material[J].Lubrication Engineering, 2010, 35(10): 1-3.
[11] 张西奎, 王成国, 王海庆, 等. 碳纤维含量对摩擦材料性能的影响[J]. 机械工程材料, 2003, 27(7): 49-51. Zhang Xi-kui, Wang Cheng-guo, Wang Hai-qing,et al. Effect of carbon fiber content on properties of friction materials[J]. Materials for Mechanical Engineering, 2003, 27(7), 49-51.
[12] Scieszka S F. Tribological phenomena in steel-composite brake material friction pairs[J]. Wear, 1980: 367-371.
[13] Jacko M G. Physical and chemical changes of organ disc pads in service[J]. Wear, 1978: 163-175.
[1] 胡志清, 郑会会, 徐亚男, 张春玲, 党停停. 表面微沟槽对Al/CFRP胶结性能的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[2] 于天来, 刘兴国, 姚爽, 穆罕默德马苏. 碳纤维筋体外预应力加固钢筋混凝土梁的疲劳性能[J]. 吉林大学学报(工学版), 2016, 46(6): 1867-1873.
[3] 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[4] 代汉达, 曲建俊, 庄乾兴. 模压工艺对CF+G/PEEK复合材料力学性能的影响[J]. 吉林大学学报(工学版), 2010, 40(02): 457-0460.
[5] 李春良,程永春,何锋. 碳纤维加固钢筋砼梁复合结构的状态空间解析[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 209-0214.
[6] 卢少微,谢怀勤,陈平 . 埋入光纤布拉格光栅传感器的智能碳纤维复合塑料[J]. 吉林大学学报(工学版), 2008, 38(06): 1300-1304.
[7] 卢少微;陈辉;谢怀勤 . CFRP加固RC梁优化设计与试验[J]. 吉林大学学报(工学版), 2008, 38(03): 642-0646.
[8] 李春良,程永春 . 碳纤维布加固钢筋混凝土梁的
预应力控制过程
[J]. 吉林大学学报(工学版), 2008, 38(02): 393-0398.
[9] 石启印, 陆鸣,张庆宗 ,李爱群,惠卓 . 碳纤维布加固的钢筋砼吊车梁的抗弯疲劳性能[J]. 吉林大学学报(工学版), 2008, 38(01): 99-104.
[10] 王树森,程永春,刘寒冰,李春良. 碳纤维与混凝土界面粘贴强度的精确测量方法[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 53-0055.
[11] 张东兴, 吴思刚, 马冰, 赵景海. CFRC抗弯试件的灵敏度[J]. 吉林大学学报(工学版), 2004, (4): 679-683.
[12] 李松松, 段秋实, 吴一辉. 应用有限元法分析碳纤维复合飞轮强度[J]. 吉林大学学报(工学版), 2003, (1): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!