吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (01): 63-67.

• 论文 • 上一篇    下一篇

聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能

刘曙光1, 闫敏1, 闫长旺1, 郭荣跃2   

  1. 1. 内蒙古工业大学 矿业学院, 呼和浩特 010051;
    2. 中铁六局集团 呼和浩特铁路建设公司, 呼和浩特 010050
  • 收稿日期:2010-07-23 出版日期:2012-01-01 发布日期:2012-01-01
  • 作者简介:刘曙光(1960-),男,教授.研究方向:纤维混凝土.E-mail:liusg6011@126.com
  • 基金资助:

    国家自然科学基金项目(50968011);教育部春晖计划基金项目(Z2004-2-15026);内蒙古自然科学基金项目(2009MS0716).

Deicing salt resistance of PVA fiber reinforced cementitious composite

LIU Shu-guang1, YAN Min1, YAN Chang-wang1, GUO Rong-yue2   

  1. 1. College of Mines, Inner Mongolia University of Technology, Hohhot 010051,China;
    2. China Railway Sixth Group, Hohhot Railway Construction Co.Ltd, Hohhot 010050, China
  • Received:2010-07-23 Online:2012-01-01 Published:2012-01-01

摘要:

通过氯盐环境中的快速冻融试验研究了纤维体积率、冻融循环次数、粉煤灰、硅粉对聚乙烯醇(PVA)纤维水泥基复合材料抗盐冻性能的影响。通过扫描电镜观察内部微观结构随盐冻作用的变化规律、PVA纤维在水泥基体中分布情况和界面结合状况。试验结果表明:PVA纤维的掺入可明显改善水泥基复合材料的抗盐冻性能;PVA纤维在基体中分散性较好,且与水泥基体界面结合状况较好;而粉煤灰、硅粉的掺入未明显改善PVA纤维水泥基复合材料的抗盐冻性能。

关键词: 土木建筑工程, 聚乙烯醇纤维, 水泥基复合材料, 氯盐环境, 抗盐冻性能, 扫描电子显微镜

Abstract:

The effects of the fiber volume ratio, the freezing-deicing cycle number, the coal fly ash, and the silicon powder on the resistance against deicing salt of the polyvinyl alcohol(PVA) fiber reinforced cementitious composite were investigated by the accelerated preezing-deicing cycle test under the chloride environment. The change of the microstructure along with the action of the chloride and the freezing-deicing, the distribution of the PVA fiber in the cement matrix and the interface binding were observed by a scan electronic microscope. The test result show that adding PVA fiber into cement improves significantly the freezing-deicing resistance of the cementitious composite under the chloride environment. The PVA fiber is well distributed in the matrix and well bound with the cement in the interface. Adding the coal fly ash or silicon powder do not much improve the deicing salt resistance of the composite.

Key words: civil architectural engineering, polyvinyl alcohol(PVA) fiber, cementitious composite, chloride condition, decing salt resistance, scan electronic microscope

中图分类号: 

  • TU375.4


[1] Mehta P D.concrete durability:fifty year's progress//The 2nd International Conference on Concrete Durability,1991:1-33.

[2] 吴瑾, 吴胜兴. 氯离子环境下钢筋混凝土结构耐久性寿命评估
[J]. 土木工程学报, 2005, 38(2): 59-63. Wu Jin, Wu Sheng-xing. Durability assessment for reinforced concrete structures in chloride environment
[J]. China Civil Engineering Journal, 2005, 38(2): 59-63.

[3] 陈朝晖, 黄河. 混凝土劣化对结构性能的影响
[J]. 重庆大学学报:自然科学版, 2003, 26(2): 42-46. Chen Zhao-hui, Huang He. Effect of reinforced concrete deterioration on structures
[J]. Journal of Chongqing University, 2003, 26(2):42-46.

[4] Li V C, Wang S. Tensile strain-hardening behavior of PVA-ECC
[J]. ACI Material Journal, 2001, 98(6):483-492.

[5] 陈婷, 詹炳根. 设计PVA纤维水泥基复合材料的研究进展
[J]. 混凝土, 2003 (11): 3-6. Chen Ting, Zhan Bing-gen. The research of polyvinyl alcohol-engineered cementitious composite
[J]. Concrete, 2003 (11): 3-6.

[6] Li V C. Durable overlay systems with engineered cementitious composites (ECC)
[J]. International Journal for Restoration of Buildings and Monuments, 2003, 9(2): 1-20.

[7] Rendon C, Li V C, Wu C. Measuring and modifying properties of PVA fiber in ECC matrix
[J]. Journal of Materials in Civil Engineering,2001, 13(6): 399-406.

[8] Kamada T, Li V C. The effects of surface preparation on the fracture behavior of ECC/Concrete repair system
[J]. Cement and Concrete Composites, 2000, 22: 423-431.

[9] 薛强. 纤维增强混凝土力学性能及界面状态研究. 天津:天津大学, 2007. Xue Qiang. Mechanical properties and interface behavior of fiber reinforced concrete. Tianjin:Tianjin University, 2007.

[10] 杨全兵. 冻融循环条件下氯化钠浓度对混凝土内部饱水度的影响
[J]. 硅酸盐学报, 2007, 35(1): 96-100. Yang Quan-bing. Effects of sodium chloride concentration on saturation degree in concrete under freezing-thawing cycles
[J]. Journal of the Chinese Ceramic Society, 2007, 35(1):96-100.

[11] 慕儒, 缪昌文, 刘加平, 等. 氯化钠、硫酸钠溶液对混凝土抗冻性的影响及其机理
[J]. 硅酸盐学报, 2001,29(6):523-529. Mu Ru, Miao Chang-wen, Liu Jia-ping, et al. Effect of NaCl and Na2SO4 solution on the frost resistance of concrete and its mechanism
[J]. Journal of the Chinese Ceramic Society, 2001,29 (6):523-529.

[1] 郑一峰, 毛健, 梁世忠, 郑传峰. 高填土场地考虑土体固结的桩基负摩阻力[J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081.
[2] 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[3] 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
[4] 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
[5] 李中华, 巴恒静. 混 凝 土 的 抗 盐 冻 性 能[J]. 吉林大学学报(工学版), 2009, 39(04): 926-931.
[6] 李艺,闫运起,赵文 . 现役结构增层刚度时变可靠性分析[J]. 吉林大学学报(工学版), 2009, 39(02): 398-0401.
[7] 胡海霞,于思荣,刘兆政,李颂 . SEBS-g-MA橡胶颗粒及有机纳米黏土
增强尼龙66复合材料的摩擦磨损性能
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 90-0093.
[8] 孙绪杰,潘景龙,郑文忠 . 玻璃纤维增强聚合物混凝土小型空心
砌块复合墙片的抗震性能
[J]. 吉林大学学报(工学版), 2008, 38(05): 1054-1059.
[9] 范鹤,,刘斌,范泽3,王成 . 高填土涵洞相似材料模型试验与数值模拟[J]. 吉林大学学报(工学版), 2008, 38(02): 399-0403.
[10] 郭学东,姜浩,. 大跨度预应力混凝土连续梁桥施工控制技术[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 34-0037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!