吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 452-458.doi: 10.13229/j.cnki.jdxbgxb201702015

• • 上一篇    下一篇

盐冻循环条件下改性沥青微细观结构

崔亚楠1, 韩吉伟1, 冯蕾1, 李嘉迪1, 王乐2   

  1. 1.内蒙古工业大学 土木工程学院,呼和浩特 010051;
    2.内蒙古自治区公路局,呼和浩特 010051
  • 收稿日期:2015-12-10 出版日期:2017-03-20 发布日期:2017-03-20
  • 作者简介:崔亚楠(1974-),女,教授,博士.研究方向:道路工程材料.E-mail:yanancui@aliyun.com
  • 基金资助:
    国家自然科学基金项目(11162010,51568054); 内蒙古自治区研究生科研创新项目(S20151012812).

Microstructure of asphalt under salt freezing cycles

CUI Ya-nan1, HAN Ji-wei1, FENG Lei1, LI Jia-di1, WANG Le2   

  1. 1.College of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051,China;
    2.Highway Bureau of Inner Mongolia, Huhhot 010051,China
  • Received:2015-12-10 Online:2017-03-20 Published:2017-03-20

摘要: 利用扫描电子显微镜(SEM)和原子力显微镜(AFM)研究了内蒙古地区道路工程常用沥青(基质沥青、SBS改性沥青和胶粉改性沥青)盐冻循环前、后的细观结构变化,分析了改性剂与沥青的相互作用机理。结果表明,SEM和AFM可以相互补充,能更好地反映沥青在不同状态下细观结构的变化。在冻融循环后,各种沥青发生不同程度的水老化,特别是盐冻循环后基质沥青与SBS改性沥青中出现盐晶粒,沥青膜破坏明显;而胶粉改性沥青中胶粉颗粒抑制盐晶粒的生长,且胶粉颗粒本身具有弹性,低温性能虽有下降,但多次冻融循环后仍能保持较好的形态。

关键词: 道路工程, 基质沥青, 改性沥青, 盐冻循环, 微观结构, 扫描电子显微镜, 原子力显微镜

Abstract: The microstructures of three kinds of asphalts (matrix asphalt, Styrene-butadiene-styrene (SBS) modified asphalt and rubber powder modified asphalt) before and after freezing throwing cycles were studied using Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). The interaction mechanism of the modified agent and the asphalt was analyzed. Results show that the combination of SEM and AFM is more accurate in observing the change of the microstructure of asphalt in complex environment. The structures of different kinds of asphalt can be destroyed under the coupling effect of deicing salt and freezing-throwing. However, the rubber powder modified asphalt can still maintain a better state after repeated freezing-thawing cycles, indicating good low temperature adaptability.

Key words: road engineering, matrix asphalt, modified asphalt, salt freezing cycle, microstructure, scanning electron microscope, atomic force microscope

中图分类号: 

  • U214.7
[1] Amini B, Tehrani S S. Simultaneous effects of salted water and water flow on asphalt concrete pavement deterioration under freeze-thaw cycles[J]. International Journal of Pavement Engineering, 2014, 15(5): 383-391.
[2] Lamothe S, Perraton D, Benedetto H D. Contraction and expansion of partially saturated hot mix asphalt samples exposed to freeze-thaw cycles[J]. Road Materials and Pavement Design, 2015, 16(2):277-299.
[3] 傅广文. 融雪剂对沥青及沥青混合料性能影响研究[D]. 长沙:长沙理工大学交通运输工程学院,2010.
Fu Guang-wen. Research on influence of snowmelt agent to performances of asphalt and asphalt mixture[D]. Changsha:School of Traffic and Transportation Engineering, Changsha University of Science & Technology,2010.
[4] Schlangen E, Sangadji S. Addressing infrastructure durability and sustainability by self healing mechanisms - recent advances in self healing concrete and asphalt[J].Procedia Engineering, 2013, 54:39-57.
[5] Rossi C O, Spadafora A, Teltayev B, et al. Polymer modified bitumen: rheological properties and structural characterization[J]. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2015, 480:390-397.
[6] 王岚,胡江三,陈刚,等. 不同改性沥青温度敏感性[J]. 功能材料,2015,46(4):4086-4090.
Wang Lan, Hu Jiang-san, Chen Gang,et al. Temperature susceptibility of different kings of modified asphalt[J]. Journal of Functional Materials,2015, 46(4):4086-4090.
[7] Yang J, Gong M, Wang X, et al. Oberservation and characterization of asphalt microstructure by atomic force microscopy[J]. Journal of Southeast University(English Edition),2014, 30(3):353-357.
[8] Wu Shao-peng, Zhu Guo-jun, Chen Zheng, et al. Laboratory research on rheological behavior and characterization of ultraviolet aged asphalt[J]. Journal of Central South University of Technology(English Edition), 2008, 15(s1): 369-373.
[9] Araujo Maria de Fatima A de S, Lins Vanessa de F C, Pasa Vânya M D, et al. Infrared spectroscopy study of photodegradation of polymer modified asphalt binder[J]. Journal of Applied Polymer Science,2012,125(4):3275-3281.
[10] 崔亚楠,邢永明,王岚,等.复合胶粉改性沥青的微观结构与流变特性[J].高分子材料科学与工程,2012,28(2):41-44.
Cui Ya-nan, Xing Yong-ming, Wang Lan, et al. Micro-structure and rheological behavior of composite crumb rubber modified asphalt[J]. Polymer Materials Science & Engineering, 2012, 28(2):41-44.
[11] 崔亚楠,邢永明, 倪文琛,等.基于细观结构特征的沥青混合料断裂机理研究[J].建筑材料学报,2013,16(1):86-89.
Cui Ya-nan, Xing Yong-ming, Ni Wen-chen, et al. Study on split mechanism of asphalt mixture based on meso-structure feature[J]. Journal of Building Materials,2013, 16(1):86-89.
[12] 康爱红.活化废胶粉改性沥青机理研究[J].公路交通科技, 2008,25(7):12-16.
Kang Ai-hong. Research on the mechanism of ACRM[J]. Journal of Highway and Transportation Research and Development, 2008, 25(7):12-16.
[13] Tarefder R A, Zaman A M. Nanoscale evaluation of moisture damage in polymer modified asphalts[J]. Journal of Materials in Civil Engineering, 2010, 22(7):714-725.
[14] 庞凌. 沥青紫外光老化特性研究[D]. 武汉:武汉理工大学材料科学与工程学院,2008.
Pang Ling. Research on the ultraviolet radiation ageing characteristics of asphalt[D]. Wuhan:School of Material Science and Engineering, Wuhan University of Technology, 2008.
[15] 熊剑平,申爱琴,潘载业. 道路水泥混凝土抗盐冻性试验研究[J].公路,2010(2):152-159.
Xiong Jian-ping, Shen Ai-qin, Pan Zai-ye. Experimental study for salt freezing resistance of road cement concrete[J].Highway,2010(2):152-159.
[16] 李东庆,孟庆洲,房建宏,等. 沥青混合料抗冻融循环性能的试验研究[J].公路,2007(12):145-147.
Li Dong-qing,Meng Qing-zhou,Fang Jian-hong,et al. Test and research on performance of frost thawing resistance of asphalt mixture[J]. Highway, 2007(12):145-147.
[17] 吴钊.冻融循环对沥青混合料性能的影响研究[D].武汉:武汉理工大学材料科学与工程学院,2011.
Wu Zhao. Impact of freeze-thaw cycles on the performance of asphalt mixture[D]. Wuhan: School Material Science and Engineering, Wuhan University of Technology,2011.
[18] 刘振正. 盐冻循环条件下的沥青材料的性能研究[D]. 呼和浩特:内蒙古工业大学土木工程学院,2013.
Liu Zhen-zheng. Research on the performance change of asphalt under the salt freezing circulation[D]. Hohhot:College of Civil Engineering, Inner Mongolia University of Technology,2013.
[19] 肖鹏,史杉杉,吴美平,等. 橡胶沥青水老化试验研究[J]. 四川大学学报:工程科学版,2014,46(1):183-186.
Xiao Peng,Shi Shan-shan,Wu Mei-ping,et al. Experimental study on water aging of rubber asphalt[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(1): 183-186.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[7] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[8] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] 刘耀辉, 陈乔旭, 宋雨来, 沈艳东. 火山灰-SBS、胶粉-SBS和SBS改性沥青压缩变形行为及机理[J]. 吉林大学学报(工学版), 2017, 47(6): 1861-1867.
[11] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[12] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[13] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[14] 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[15] 王智远, 李国栋, 王勇华. 基于AHP-TOPSIS的桥梁设计方案优选决策模型[J]. 吉林大学学报(工学版), 2017, 47(2): 478-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!