›› 2012, Vol. 42 ›› Issue (05): 1145-1150.

• 论文 • 上一篇    下一篇

电流变抛光液剪切屈服特性

张雷, 赵云伟, 杨卓, 赵继   

  1. 吉林大学 机械科学与工程学院, 长春 130022
  • 收稿日期:2011-09-01 出版日期:2012-09-01 发布日期:2012-09-01
  • 基金资助:
    教育部新世纪优秀人才支持计划项目( NCET-06-0312) ; 吉林省杰出青年基金项目( 20050121).

Shear yield property of electrorheological polishing fluid

ZHANG Lei, ZHAO Yun-wei, YANG Zhuo, ZHAO Ji   

  1. College of Mechanical Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2011-09-01 Online:2012-09-01 Published:2012-09-01

摘要: 通过电子显微镜观察了在电场作用下电流变抛光液微粒垂直电极形成的纤维柱状微观结构。根据粒子的结合模型和粒子间的作用力,建立了电流变抛光液的静态剪切屈服应力模型,计算了粒子链的抗剪切强度。在屈服应力测试装置上进行了电流变抛光液的静态剪切屈服应力实验,得到了磨料种类、浓度和粒度对电流变抛光液的剪切屈服应力的影响规律,并通过实验对理论模型进行了验证。

关键词: 机械制造自动化, 电流变抛光液, 剪切屈服应力, 电场强度

Abstract: The shear yield property of electrorheological (ER) polishing fluid was investigated for ER fluid-assisted polishing. The microstructure of fibrous columns formed by particles perpendicular to the electrodes was observed by electronic microscope when the electrical field was applied. A theoretical model for the static shear yield stress of the ER polishing fluid was built to calculate the shear strength of the chain structure of particles, which was based on the combination structure of ER particles with abrasive particles and the attraction forces between particles in ER polishing fluid. A series of experiments were conducted to measure the static shear yield stress of ER polishing fluid by the developed yield stress testing device. The effects of the species, sizes and concentrations of abrasive particles on the shear yield stress of ER polishing fluid were obtained and the validity of the presented model was confirmed by experiments.

Key words: mechanical manufacturing and automation, electrorheological polishing fluid, shear yield stress, electrical field intensity

中图分类号: 

  • TG580.692
[1] Halsey T C. Electrorheological fluids[J]. Science, 1992, 258:761-766.
[2] Tao R. Structure and dynamics of dipolar fluids under strong shear[J]. Chemical Engineering Science, 2006, 61: 2186-2190.
[3] Wu C W, Conrad Hans. Shear strength of electrorheological particle clusters[J]. Materials Science and Engineering, 1998, A248:161-164.
[4] Kuriyagawa T, Syoji K. Development of electrorheological fluid assisted machining for 3-dimensional small parts[J]. Journal of Japan Society for Precision Engineering, 1999,65 (1): 145-149.
[5] Kuriyagawa T, Saeki M, Syoji K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts[J]. Precision Engineering, 2002, 26: 370-380.
[6] Kim W B, Min B K, Lee S J. Development of a padless ultraprecision polishing method using electrorheological fluid[J].Journal of Materials Processing Technology, 2004, 155/156: 1293-1299.
[7] Zhang L, He X S, Yang H R, et al. An integrated tool for five-axis electrorheological fluid-assisted polishing[J]. International Journal of Machine Tools and Manufacture,2010,50 : 737-740.
[8] Bossis G, Lacis S, Meunier A, et al. Magnetorheological fluids[J]. Journal of Magnetism and Magnetic Materials, 2002, 25: 224-228.
[9] 魏宸官. 电流变技术-机理材料工程应用[M].北京: 北京理工大学出版社,2000.
[10] Kim W B, Lee S J, Kim Y J, et al. The electromechanical principle of electrorheological fluid-assisted polishing[J]. International Journal of Machine Tools and Manufacture, 2003, 43:81-88.
[1] 曲兴田, 赵永兵, 刘海忠, 王昕, 杨旭, 陈行德. 串并混联机床几何误差建模与实验[J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[2] 任书楠, 杨向东, 王国磊, 刘志, 陈恳. 大部件喷涂中的移动机械臂站位规划[J]. 吉林大学学报(工学版), 2016, 46(6): 1995-2002.
[3] 沈志煌, 姚斌, 陆如升, 冯伟, 张祥雷, 王萌萌. 精密螺杆转子齿廓成形磨削的误差分析[J]. 吉林大学学报(工学版), 2016, 46(3): 831-838.
[4] 王延忠, 侯良威, 吕庆军, 赵兴福, 吴灿辉. 基于总线控制的面齿轮复杂曲面加工技术[J]. 吉林大学学报(工学版), 2015, 45(6): 1836-1843.
[5] 陈健, 葛连正, 李瑞峰. 考虑摩擦特性的机器人柔性关节鲁棒控制器设计[J]. 吉林大学学报(工学版), 2015, 45(6): 1906-1912.
[6] 郭黎滨, 张彬, 崔海, 张志航. 微细电火花线切割表面三维粗糙度的结构性参数[J]. 吉林大学学报(工学版), 2015, 45(3): 851-856.
[7] 王继利, 杨兆军, 李国发, 朱晓翠. EM算法的多重威布尔可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(4): 1010-1015.
[8] 杨兆军,王继利,李国发,张新戈. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报(工学版), 2014, 44(3): 686-691.
[9] 佟金, 王亚辉, 卢纪生, 张书军, 陈东辉. 基于CCD的大型台阶轴锻件同轴度测量[J]. 吉林大学学报(工学版), 2013, 43(04): 945-950.
[10] 史永杰, 郑堤, 胡利永, 王龙山. 非球面件数控研抛力、研抛工具位置和姿态解耦技术[J]. 吉林大学学报(工学版), 2012, 42(01): 116-121.
[11] 张英芝1,郑锐2,申桂香1,王志琼1,李怀洋1,郑珊1. 基于Copula理论的数控装备故障相关性[J]. 吉林大学学报(工学版), 2011, 41(6): 1636-1640.
[12] 任迪, 王祖温, 包钢, 杨庆俊. 新型高刚度静压气体球轴承的静态特性[J]. 吉林大学学报(工学版), 2010, 40(06): 1599-1603.
[13] 孔繁森, 刘鹏, 曹阳华, 石金丹. 变速箱厂生产作业环境的模糊综合评价[J]. 吉林大学学报(工学版), 2010, 40(02): 475-0479.
[14] 赵扬, 赵继, 张雷, 齐立哲. 基于逆向工程的机器人磨削叶片[J]. 吉林大学学报(工学版), 2009, 39(05): 1176-1180.
[15] 冀世军,王扬,吕汉明 . 三角形网格多面体空间四边界区域的数据参数化[J]. 吉林大学学报(工学版), 2009, 39(02): 458-0462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!