›› 2012, Vol. 42 ›› Issue (05): 1214-1218.

• 论文 • 上一篇    下一篇

带双洞区域与简单区域间的拓扑关系

李健1,2,3, 欧阳继红1,3, 王振鑫1,3   

  1. 1. 吉林大学 计算机科学与技术学院,长春 130012;
    2. 吉林农业大学 信息技术学院,长春130118;
    3. 吉林大学 符号计算与知识工程教育部重点实验室,长春 130012
  • 收稿日期:2012-02-20 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 欧阳继红(1964-),女,教授,博士生导师.研究方向:知识工程与专家系统,空间推理和数据挖掘. E-mail:ouyangjihong@yahoo.com.cn E-mail:ouyangjihong@yahoo.com.cn
  • 基金资助:
    国家自然科学基金项目(61170092,61133011,60973088, 60973089,61103091);吉林农业大学青年启动基金项目(201040).

Topological relations between a region with two holes and a simple region

LI Jian1,2,3, OUYANG Ji-hong1,3, WANG Zhen-xin1,3   

  1. 1. College of Computer Science and Technology, Jilin University,Changchun 130012, China;
    2. Information Technology College, Jilin Agricultural University, Changchun 130118, China;
    3. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2012-02-20 Online:2012-09-01 Published:2012-09-01

摘要: 研究了带双洞区域与简单区域间的空间拓扑关系。基于RCC5通过扩展4-交集矩阵得到了16-交集模型,一个带双洞区域可以视为一个简单区域A及包含在其中的两个简单区域B与C,即一个带双洞区域与一个简单区域可以看作是满足一定限制条件的4个简单区域,由16-交集模型可以得到带双洞区域与简单区域间的70种可实现的拓扑关系,并且证明了这70种拓扑关系是两两互斥且完备的。通过比较可知,它比由两两区域间RCC-5关系来描述的拓扑关系更为细致,表达能力更强。

关键词: 人工智能, 拓扑关系, 带双洞区域, 简单区域, 16-交集矩阵模型

Abstract: The topological relations between a region with two holes and a simple region were studied. First, we extend 4-intersection matrix model to 16-intersection matrix model to represent the spatial relations of four simple regions, a region with two holes can be seen as a simple region A and two simple regions B and C included in A. Then, a region with two holes and simple region can be seen as four simple regions satisfying certain restricted conditions. Consequently, we obtain 70 topological relations between region with two holes and a simple region in practice by programs and we prove that these topological relations are exclusive and complete. Moreover, compared to the topological relations given by RCC-5 in pairs, the 16-intersection matrix model has stronger expressive ability.

Key words: artificial intelligence, topological relations, a region with two holes, simple region, 16-intersections matrix model

中图分类号: 

  • TP18
[1] Wang Sheng-sheng,Liu Da-you. Knowledge representation and reasoning for qualitative spatial change[J]. Knowledge-Based Systems,2012,30:161-171.
[2] Wang Sheng-sheng,Liu Da-you. An efficient method for calculating qualitative spatial relations[J].Chinese Journal of Electronics,2009,18(1):42-46.
[3] Frank A. MAPQUERY: data base query language for retrieval of geometric data and their graphical representation//Proceedings of the 9th Annual Conference on Computer Graphics and Interactive Techniques.New York: ACM, 1982.
[4] Lohman G, Stoltzfus J, Benson A, et al. Remotely-sensed geophysical databases: experience and implications for generalized DBMS//Proceedings of the 1983 ACM SIGMOD International Conference on Management of Data.New York: ACM, 1983.
[5] Cohn A. The challenge of qualitative spatial reasoning[J]. ACM Computing Surveys (CSUR), 1995, 27(3):323-325.
[6] Egenhofer M, Franzosa R. Point-set topological spatial relations[J]. International Journal of Geographical Information Systems, 1991, 5(1):161-174.
[7] Egenhofer M, Vasardani M. Spatial reasoning with a hole//Spatial Information Theory: 8th International Conference. Melbourne: Springer,2007.
[8] 欧阳继红,霍林林,刘大有,等. 能表达带洞区域拓扑关系的扩展9-交集模型[J]. 吉林大学学报:工学版, 2009, 39(6):1595-1600. Ouyang Ji-hong, Huo Lin-lin, Liu Da-you, et al. Extended 9-intersection model for description of topological relations between regions with holes[J]. Journal of Jilin University (Engineering and Technology Edition),2009, 39(6):1595-1600.
[9] Li Jian, Ouyang Ji-hong, Wang Zhen-xin. Representation for topological relations of four simple regions//The 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery(FSKD'12),Chongqing,China,2012.
[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!