吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 384-388.

• 论文 • 上一篇    下一篇

基于字典学习与稀疏表示的非结构化道路分割方法

肖良, 戴斌, 吴涛, 方宇强   

  1. 国防科技大学 机电工程与自动化学院,长沙 410072
  • 收稿日期:2012-09-30 发布日期:2013-06-01
  • 作者简介:肖良(1988- ),男,博士研究生.研究方向:模式识别与智能系统.E-mail:xiaoliang@nudt.edu.cn
  • 基金资助:

    国家自然科学基金项目(61075043).

Unstructured road segmentation method based on dictionary learning and sparse representation

XIAO Liang, DAI Bin, WU Tao, FANG Yu-qiang   

  1. College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410072, China
  • Received:2012-09-30 Published:2013-06-01

摘要:

针对野外环境自主车视觉导航问题,提出了一种新颖的基于字典学习与稀疏表示的道路分割算法。该算法以局部图像小片为处理单元,通过选取典型道路图像学习得到路面图像小片的一组字典,并利用车辆前方的一小块区域作为监督,通过在线字典学习对字典进行实时更新,使路面图像小片可在该字典上精确稀疏表示,而非路面图像小片则不能。因此建立了基于字典学习与稀疏表示的分类框架,利用局部图像小片在字典上的稀疏重构误差进行分类。大量实验结果表明,该算法能够适应多变的非结构化道路环境,且对光照、阴影及水坑等具有较好的鲁棒性。

关键词: 字典学习, 稀疏表示, 道路分割, 非结构化环境

Abstract:

For vision navigation of ALV in complicated environments,a novel dictionary learning and sparse representation based road segmentation algorithm was proposed.The local image patch was used as the processing unit;a dictionary was learned based on man-selected typical road image and the dictionary could be updated in real time by online dictionary learning with the little piece of image right before the vehicle as supervision.With this dictionary,the on-road patches could be sparse represented precisely while the off-road patches could not A dictionary Learning and sparse representation based on classification framework was built and the local image patches could be classified by the reconstruction errors of sparse representation.A variety of experiments show that the proposed algorithm is suitable for various unstructured environments and is robust to illumination,shadow and water stains;unstructured environment.

Key words: dictionary learning, sparse representation, road segmentation, unstructured environment

中图分类号: 

  • TP391

[1] Hui Kong,Jean-Yves Audibert,Jean Ponce.General road detection from a single image[J].IEEE Trans on Image Processing,2010,9(18):2211-2220.

[2] Alon Y,Ferencz A,Shashua A.Off-road path following using region classification and geometric projection constraints[C]// CVPR,2006.

[3] Patrick Conrad,Mike Foedisch.Performace evaluation of color based road detection using neural nets and support vector machines[C]// Proc.Applied Imagery Patt.Recog.Workshop,2003.

[4] Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation [J].IEEE TPAMI,2009,31(2):210-227.

[5] Meng Yang,Lei Zhang,Jian Yang,et al.Robust sparse coding for face recognition[C]// Proc.CVPR.Providence,RI,2011:625-632.

[6] Yang J,Yu K,Gong Y,et al.Linear spatial pyramid matching using sparse coding for image classification[C]// CVPR,2009.

[7] Chen-Kuo Chiang,Chih-Hsueh Duan,Shang-Hong Lai,et al.Learning component-level sparse representation using histogram information for image classification [C]// ICCV,2011.

[8] Gabriel Peyre.Sparse modeling of textures[J].Journal of Mathematical Imaging and Vision,2009,34 (1):17-31.

[9] Bin Zhao,Li Fei-fei,Eric P Xing.Online detection of unusual events in videos via dynamic sparse coding[C]// CVPR,2011.

[10] Tropp J A.Greed is good:Algorithmic results for sparse approximation[J].IEEE Trans.Inform.Theory,2004,50(10):2231-2242.

[11] Allen Y Yang,Sastry S S.Fast l1-minimization algorithms and an application in robust face recognition:a review[C]// ICIP,2010.

[12] Julien Mairal,Francis Bach,Jean Ponce,et al.Online dictionary learning for sparse coding[C]// ICML,2009.

[13] Honglak Lee,Alexis Battle,Rajat Raina,et al.Efcient sparse coding algorithms[C]// Advances Neural Info.Proc.Sys,2006.

[14] Engan K,Aase S O,Hakon-Husoy J H.Method of optimal directions for frame design[C]// Int.Conf.Acoust.,Speech,Signal Process,1999:2443-2446.

[15] Michal Aharon,Michael Elad,Alfred Bruckstein.K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Trans on Signal Processing,2006,54:4311-4322.

[1] 尹明, 战荫伟, 裴海龙. 基于稀疏补算子学习的图像融合方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[2] 李蕙, 王延江, 刘宝弟, 刘伟锋, 王肖萌. 基于快速字典学习和特征稀有性的显著目标提取[J]. 吉林大学学报(工学版), 2016, 46(5): 1710-1717.
[3] 查长军,韦穗,杨海蓉,丁大为. 基于稀疏表示的多类融合样本中特定目标识别[J]. 吉林大学学报(工学版), 2014, 44(3): 822-827.
[4] 卜莎莎, 章毓晋. 基于局部约束线性编码的单帧和多帧图像超分辨率重建[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 365-370.
[5] 查长军, 孙南, 张成, 韦穗. 基于稀疏表示的特定目标识别[J]. 吉林大学学报(工学版), 2013, 43(01): 256-260.
[6] 翟懿奎, 甘俊英, 徐颖, 曾军英. 快速稀疏表示指背关节纹识别及其并行实现[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 350-355.
[7] 周春光, 孙明芳, 王甦菁, 陈前, 刘小华, 刘昱昊. 基于稀疏张量的人脸图像特征提取[J]. , 2012, (06): 1521-1526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!