吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1710-1717.doi: 10.13229/j.cnki.jdxbgxb201605048
李蕙, 王延江, 刘宝弟, 刘伟锋, 王肖萌
LI Hui, WANG Yan-jiang, LIU Bao-di, LIU Wei-feng, WANG Xiao-meng
摘要: 为了更准确地提取自然图像中的显著目标,本文提出了一种新的显著目标提取算法。首先,基于稀疏编码理论提出了快速字典学习算法应用于特征提取;然后,通过统计分析相应稀疏表示系数计算字典原子的稀有性,并基于特征稀有性进行显著度计算,应用数学形态学算子等进一步去除伪目标。实验结果表明:本文算法相较于其他4种现存的传统算法提取自然图像中的显著目标更为准确。此外,本文算法也能够有效地处理包含多个显著目标的自然图像。
中图分类号:
[1] Itti L, Koch C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001, 2(3): 194-203. [2] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. [3] Treisman A M, Gelade G. A feature-integration theory of attention[J]. Cognitive Psychology, 1980, 12(1): 97-136. [4] Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry[J]. Human Neurobiology, 1985, 4(4): 219-227. [5] Harel J, Koch C, Perona P. Graph-based visual saliency[C]∥Advances in Neural Information Processing Systems 19, Vancouver, British Columbia, Canada, 2006: 545-552. [6] Hou X, Zhang L. Saliency detection: a spectral residual approach[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007:1-8. [7] Li J, Levine M D, An X, et al. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(4): 996-1010. [8] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by V1?[J]. Vision Research, 1997, 37(23): 3311-3325. [9] 穆治亚, 魏仲慧, 何昕,等. 采用稀疏表示的红外图像自适应杂波抑制[J]. 光学精密工程, 2013, 21(7):1850-1857. Mu Zhi-ya, Wei Zhong-hui, He Xin, et al. Adaptive clutter suppression of infrared images by using sparse representation[J]. Optics and Precision Engineering, 2013, 21(7):1850-1857. [10] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. [11] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. [12] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]∥The Twenty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, California, USA, 1993: 40-44. [13] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 33-61. [14] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[C]∥20th Annual Conference on Neural Information Processing Systems,Vancouver, British Columbia, Canada, 2006: 801-808. [15] Liu B D, Wang Y X, Shen B, et al. Blockwise coordinate descent schemes for sparse representation[C]∥2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 5267-5271. [16] Bertsekas D P. Nonlinear programming[J]. Journal of the Operational Research Society, 1995, 4(1): 67-110. [17] Liu T, Yuan Z, Sun J, et al. MSRA database[DB/OL].[2015-01-06].http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm. [18] Stentiford F, Park A, Heath M. An estimator for visual attention through competitive novelty with application to image compression[J]. Immunology, 2010, 104(2): 149-156. [19] Mancas M, Mancas-thillou C, Gosselin B, et al. A rarity-based visual attention map-application to texture description[C]∥2006 International Conference on Image Processing, Atlanta, Georgia, USA, 2006: 445-448. [20] 赵佳佳, 唐峥远, 杨杰, 等. 基于图像稀疏表示的红外小目标检测算法[J]. 红外与毫米波学报, 2011, 30(2): 156-161. Zhao Jia-jia, Tang Zheng-yuan, Yang Jie, et al. Infrared small target detection based on image sparse representation[J]. Journal of Infrared and Millimeter Waves, 2011, 30(2): 156-161. [21] Liu T, Yuan Z, Sun J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(2): 353-367. [22] Hemami S, Estrada F, Susstrunk S. Achanta database[DB/OL].[2015-11-04].http://ivrlwww.epfl.ch/supplementary_material/RK_CVPR09/. [23] Yang J, Yang S, Fu Y, et al. Non-negative graph embedding[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008: 1-8. |
[1] | 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894. |
[2] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[3] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[4] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[5] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[6] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[7] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[8] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[9] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[10] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[11] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[12] | 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[13] | 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[14] | 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
[15] | 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639. |
|