吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 389-393.

• 论文 • 上一篇    下一篇

图像去雾的大气光幕修补改进算法

谭华春1, 朱湧1, 赵亚男1, 谢湘2, 陈涛3, 章毓晋4   

  1. 1. 北京理工大学 机械与车辆学院,北京 100081;
    2. 北京理工大学 信息与电子学院,北京100081;
    3. 长安大学 汽车学院,西安 710064;
    4. 清华大学 电子工程系,北京 100084
  • 收稿日期:2012-09-05 发布日期:2013-06-01
  • 作者简介:谭华春(1975-),男,副教授.研究方向:图像工程,计算机视觉,智能交通系统.E-mail:tanhc@bit.edu.cn
  • 基金资助:

    国家自然科学基金项目(61171118;61271376;91120015;91120010);北京市自然科学基金项目(4122067);中央高校基本科研业务费专项资金项目(CHD2011SY010).

Image fog removal using improved atmospheric veil inpainting

TAN Hua-chun1, ZHU Yong1, ZHAO Ya-nan1, XIE Xiang2, CHEN Tao3, ZHANG Yu-jin4   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
    3. School of Automobile, Chang'an University, Xi'an 710064, China;
    4. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • Received:2012-09-05 Published:2013-06-01

摘要:

在雾天环境下,针对大气中存在悬浮微粒导致采集的图像降质问题,提出一种大气光幕修补改进算法对单幅图像去雾。首先简化大气散射物理模型,对大气光幕粗估计,并基于引导滤波器提出一种大气光幕修补的改进算法,从而得到更精确的大气光幕;然后提出了一种半逆法准确估计空气光强度;最后通过求解雾天图像大气散射模型恢复理想光照条件下的清晰图像。实验结果表明,该算法能鲁棒地估计大气光强度,能在保证大气光幕边缘的同时进行良好的平滑操作,提高图像的视见度。

关键词: 计算机应用, 图像去雾, 半逆法, 引导滤波

Abstract:

Images captured in foggy weather condition exhibit losses in quality due to atmospheric particles.A novel single image fog removal method was proposed using improved atmospheric veil inpainting.At first,the atmospheric scattering model was simplified,and the coarser atmospheric veil estimate was refined using guided filter approach that improved atmospheric veil inpainting.Then a semi-inverse method of the fog image was produced to estimate the Airlight accurately.Finally,the fog-free image could be recovered by solve imaging physical equation of atmospheric scattering model.Results demonstrate the power of the proposed method performs as an edge-preserving smoothing operator and achieves a great improvement in image visibility.

Key words: computer application, image fog removal, semi-inverse, guided filter

中图分类号: 

  • TP391

[1] Narasimhan S G,Nayar S K.Vision and the atmosphere[J].International Journal of Computer Vision,2002,48(3):233-254.

[2] Narasimhan S G,Nayar S K.Contrast restoration of weather degraded images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25:713-724.

[3] Tan R.Visibility in bad weather from a single image[C]//IEEE Conference on Computer Vision and Pattern Recognition,Anchorgae,USA,2008,1:1- 8.

[4] He K M,Sun J,Tang X O.Single image haze removal using dark channel prior[C]//IEEE Conference on Computer Vision and Pattern Recognition,Miami,USA,2009,1:1956-1963.

[5] Tarel J P,Hautiere N.Fast visibility restoration from a single color or gray level image[C]//Proceedings of the 12th IEEE International Conference on Computer Vision,Kyoto,Japan,2009:2201-2208.

[6] Yu J,Xiao C,Li D P.Physic-based fast single image fog removal[C]//2010 IEEE 10th International Conference on Signal Processing (ICSP),IEEE,2010:1048-1052.

[7] He K M,Sun J,Tang X O.Guided image filtering[C]//Proceedings of 11th European Conference on Computer Vision,Crete,Greece,2010:1-14.

[8] Hautiere N,Tarel J P,Aubert D.Blind contrast enhancement assessment by gradient ratioing at visible edges[J].Image Analysis and Stereology Journal,2008,27(2):87-95.

[9] Chambah M,Rizzi A,Gatta C,et al.Perceptual approach for unsupervised digital color restoration of cinematographic archives[C]//Proceedings of SPLE Conference on Color Imaging Ⅷ:Processing,Hardcopy,and Applications,Washington,USA,2003:138-149.

[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!